1
|
Zhang Y, Zhong C, Ke X, Liu J, Ye Z, Lu L, Deng K, Zhu H, Yao Y. Advances in genetic abnormalities, epigenetic reprogramming, and immune landscape of intracranial germ cell tumors. Acta Neuropathol Commun 2023; 11:188. [PMID: 38012690 PMCID: PMC10683083 DOI: 10.1186/s40478-023-01682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
Intracranial germ cell tumors (IGCTs) are a rare subtype of central nervous system neoplasms that predominantly affect young individuals and exhibit a higher incidence in East Asia. IGCTs can be pathologically divided into two main categories: germinomas and non-germinomatous germ cell tumors (NGGCTs). Despite the scarcity of this disease, recent advancements in molecular biology techniques have facilitated the discovery of the inherent genetic and molecular characteristics of IGCTs. Somatic mutations that result in the activation of the KIT/RAS/MAPK and PI3K/AKT/mTOR pathways, chromosomal instability leading to characteristic changes in chromosomal fragments (notably 12p gain), and potentially diagnostic miRNAs (such as miR-371a-3p) may provide valuable insights for the efficient diagnosis, targeted therapy, and prognosis evaluation of IGCTs. Additionally, transcriptomic and methylomic analyses have provided new perspectives on the intrinsic development of IGCTs, further elucidating their equivalence with GCTs at other sites. The evaluation of the tumor immune landscape may guide prognosis prediction and immunotherapy for IGCT patients. Nevertheless, current research still faces challenges such as the absence of basic laboratory research systems, a single source of large sample research data, and a limited overall volume of research. The incorporation of larger sample sizes, the implementation of more innovative evaluation systems, and the employment of novel experimental methods are urgently required to become the focus of future research.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Chengyi Zhong
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xindi Ke
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Jifang Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhang Ye
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lin Lu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Kan Deng
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yong Yao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Bian Y, Hahn H, Uhmann A. The hidden hedgehog of the pituitary: hedgehog signaling in development, adulthood and disease of the hypothalamic-pituitary axis. Front Endocrinol (Lausanne) 2023; 14:1219018. [PMID: 37476499 PMCID: PMC10355329 DOI: 10.3389/fendo.2023.1219018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Hedgehog signaling plays pivotal roles in embryonic development, adult homeostasis and tumorigenesis. However, its engagement in the pituitary gland has been long underestimated although Hedgehog signaling and pituitary embryogenic development are closely linked. Thus, deregulation of this signaling pathway during pituitary development results in malformation of the gland. Research of the last years further implicates a regulatory role of Hedgehog signaling in the function of the adult pituitary, because its activity is also interlinked with homeostasis, hormone production, and most likely also formation of neoplasms of the gland. The fact that this pathway can be efficiently targeted by validated therapeutic strategies makes it a promising candidate for treating pituitary diseases. We here summarize the current knowledge about the importance of Hedgehog signaling during pituitary development and review recent data that highlight the impact of Hedgehog signaling in the healthy and the diseased adult pituitary gland.
Collapse
|
3
|
Matissek SJ, Elsawa SF. GLI3: a mediator of genetic diseases, development and cancer. Cell Commun Signal 2020; 18:54. [PMID: 32245491 PMCID: PMC7119169 DOI: 10.1186/s12964-020-00540-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023] Open
Abstract
The transcription factor GLI3 is a member of the Hedgehog (Hh/HH) signaling pathway that can exist as a full length (Gli3-FL/GLI3-FL) or repressor (Gli3-R/GLI3-R) form. In response to HH activation, GLI3-FL regulates HH genes by targeting the GLI1 promoter. In the absence of HH signaling, GLI3 is phosphorylated leading to its partial degradation and the generation of GLI3-R which represses HH functions. GLI3 is also involved in tissue development, immune cell development and cancer. The absence of Gli3 in mice impaired brain and lung development and GLI3 mutations in humans are the cause of Greig cephalopolysyndactyly (GCPS) and Pallister Hall syndromes (PHS). In the immune system GLI3 regulates B, T and NK-cells and may be involved in LPS-TLR4 signaling. In addition, GLI3 was found to be upregulated in multiple cancers and was found to positively regulate cancerous behavior such as anchorage-independent growth, angiogenesis, proliferation and migration with the exception in acute myeloid leukemia (AML) and medulloblastoma where GLI plays an anti-cancerous role. Finally, GLI3 is a target of microRNA. Here, we will review the biological significance of GLI3 and discuss gaps in our understanding of this molecule. Video Abstract.
Collapse
Affiliation(s)
- Stephan J. Matissek
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd Rudman 291, Durham, NH 03824 USA
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Rd Rudman 291, Durham, NH 03824 USA
| |
Collapse
|