1
|
Antonio J, Antonio B, Arent SM, Candow DG, Escalante G, Evans C, Forbes S, Fukuda D, Gibbons M, Harty P, Jagim AR, Kalman DS, Kerksick CM, Kurtz JA, Lillis J, Lowery L, Mastrofini GF, Mills S, Nelson M, Pereira F, Roberts J, Sagner M, Stout J, Tartar J, Wells A. Common Questions and Misconceptions About Energy Drinks: What Does the Scientific Evidence Really Show? Nutrients 2024; 17:67. [PMID: 39796501 PMCID: PMC11722573 DOI: 10.3390/nu17010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
Energy drinks are a commonly consumed beverage, and studies suggest a possible performance-enhancing effect. A Google Scholar search using the keywords "energy drinks" and "exercise" yields numerous results, underscoring the voluminous research on this topic. However, there are questions regarding the effectiveness and safety of energy drinks. These questions include, but are not limited to: (1) What are the main active ingredients in energy drinks? (2) Do energy drinks assist in weight management? (3) Do energy drinks enhance aerobic performance? (4) Do energy drinks enhance athletic speed? (5) Do energy drinks improve reaction time? (6) Do energy drinks enhance lean tissue mass? (7) Can energy drinks improve cognitive performance? (8) Does the acute consumption of energy drinks elevate resting energy expenditure? (9) Is there any evidence to suggest that energy drinks are more effective than an identical serving of caffeine alone? (10) Are there sex differences in the response to energy drink consumption? (11) Do energy drinks affect sleep or sleepiness? (12) Should pregnant women avoid energy drinks? (13) Do energy drinks adversely affect cardiovascular function? (14) Does consuming energy drinks cause brain damage? (15) What are other safety considerations regarding energy drinks? (16) Is there any evidence to suggest that energy drinks are more effective than an identical serving of caffeine alone? (17) If caffeine is the main active ingredient in energy drinks and coffee, why is there a discrepancy in the adverse events reported for each? To address these questions, we performed an evidence-based scientific evaluation of the literature on energy drink supplementation.
Collapse
Affiliation(s)
- Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33328, USA
| | - Brandi Antonio
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA (D.F.)
| | - Shawn M. Arent
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (S.M.A.)
| | - Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada; (D.G.C.); (S.M.)
| | - Guillermo Escalante
- College of Natural Sciences, California State University, San Bernadino, CA 92407, USA
| | - Cassandra Evans
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL 33328, USA
| | - Scott Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB R7A 6A9, Canada
| | - David Fukuda
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA (D.F.)
| | | | - Patrick Harty
- College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA (C.M.K.)
| | | | - Douglas S. Kalman
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, FL 33314, USA (J.T.)
| | - Chad M. Kerksick
- College of Science, Technology, and Health, Lindenwood University, St. Charles, MO 63301, USA (C.M.K.)
| | - Jennifer A. Kurtz
- Department of Public Health & Exercise Science, Appalachian State University, Boone, NC 28607, USA
| | - Joseph Lillis
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (J.R.)
| | - Lonnie Lowery
- Walsh University, Department of Exercise Science, North Canton, OH 44720, USA
| | - Gianna F. Mastrofini
- Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA; (S.M.A.)
| | - Scotty Mills
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, SK S4S 0A2, Canada; (D.G.C.); (S.M.)
| | | | | | - Justin Roberts
- Cambridge Centre for Sport & Exercise Sciences, Anglia Ruskin University, Cambridge CB1 1PT, UK (J.R.)
| | - Michael Sagner
- European Society of Preventive Medicine, Oxford Science Park,
Robert Robinson Avenue, Oxford OX4 4GP, UK
| | - Jeffrey Stout
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA (D.F.)
| | - Jaime Tartar
- Department of Psychology and Neuroscience, Nova Southeastern University, Davie, FL 33314, USA (J.T.)
| | - Adam Wells
- College of Health Professions and Sciences, University of Central Florida, Orlando, FL 32816, USA (D.F.)
| |
Collapse
|
2
|
Effect of a high-fat diet and leptin on STAT3 phosphorylation in hippocampal astrocytes. Neuroreport 2023; 34:30-37. [PMID: 36504039 DOI: 10.1097/wnr.0000000000001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of the current study was to evaluate the influence of HFD on the functionality of LepR by quantifying phosphorylated levels of 705Tyr-STAT3 in hippocampus astrocytes from mice that consumed an HFD either during the juvenile or the adult period. METHODS Five- and eight-week-old male mice, fed during 8 weeks with either control chow or HFD, received a single dose of leptin and their brains were prepared for immunofluorescence to identify double-positive GFAP/p705Tyr-STAT3 cells. RESULTS HFD intake led to increased pSTAT3 immunoreactivity in GFAP+ cells in the CA1/CA3 hippocampus areas. The effect was observed both in adolescent and adult mice. Leptin increased pSTAT3 immunoreactivity in control animals but was devoid of effect in HFD mice. HFD itself has no effect on the number of GFAP+ cells. CONCLUSIONS Our data show that regular intake of HFD enhances STAT3 signaling in CA1/CA3 astrocytes, an effect that could be linked to the increase of leptin triggered by HFD. The increase of pSTAT3 might be integral to homeostatic mechanisms aimed at maintaining hippocampus function.
Collapse
|
3
|
Assi AA, Abdelnabi S, Attaai A, Abd-Ellatief RB. Effect of ivabradine on cognitive functions of rats with scopolamine-induced dementia. Sci Rep 2022; 12:16970. [PMID: 36216854 PMCID: PMC9551060 DOI: 10.1038/s41598-022-20963-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/21/2022] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease is among the challenging diseases to social and healthcare systems because no treatment has been achieved yet. Although the ambiguous pathological mechanism underlying this disorder, ion channel dysfunction is one of the recently accepted possible mechanism. Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels play important roles in cellular excitability and synaptic transmission. Ivabradine (Iva), an HCN blocker, is acting on HCN channels, and is clinically used for angina and arrhythmia. The current study aimed to investigate the therapeutic effects of Iva against scopolamine (Sco) induced dementia. To test our hypothesis, Sco and Iva injected rats were tested for behavioural changes, followed by ELISA and histopathological analysis of the hippocampus. Induced dementia was confirmed by behavioural tests, inflammatory cytokines and oxidative stress tests and histopathological signs of neurodegeneration, multifocal deposition of congo red stained amyloid beta plaques and the decreased optical density of HCN1 immunoreactivity. Iva ameliorated the scopolamine-induced dysfunction, the hippocampus restored its normal healthy neurons, the amyloid plaques disappeared and the optical density of HCN1 immunoreactivity increased in hippocampal cells. The results suggested that blockage of HCN1 channels might underly the Iva therapeutic effect. Therefore, Iva might have beneficial effects on neurological disorders linked to HCN channelopathies.
Collapse
Affiliation(s)
- Abdel-Azim Assi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sara Abdelnabi
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abdelraheim Attaai
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| | - Rasha B Abd-Ellatief
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
5
|
Graneri L, Lam V, D'Alonzo Z, Nesbit M, Mamo JCL, Takechi R. The Consumption of Energy Drinks Induces Blood-Brain Barrier Dysfunction in Wild-Type Mice. Front Nutr 2021; 8:668514. [PMID: 34012975 PMCID: PMC8126614 DOI: 10.3389/fnut.2021.668514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/08/2021] [Indexed: 12/15/2022] Open
Abstract
Energy drinks containing significant quantities of caffeine and sugar are increasingly consumed, particularly by adolescents and young adults. Chronic ingestion of energy drinks may potentially regulate vascular risk factors. This study investigated the effects of chronic ingestion of energy drinks on blood-brain barrier (BBB) integrity and neuroinflammation. Male C57BL/6J mice were maintained on water (control), MotherTM (ED), sugar-free MotherTM (sfED), or Coca ColaTM soft drink (SD) for 13 weeks. The BBB integrity and neuroinflammation were analyzed with semi-quantitative immunofluorescent microscopy. Blood pressure, plasma inflammatory cytokine levels and blood glucose were also considered. Following 13 weeks of intervention, mice treated with ED, sfED, and SD showed significant disruption of BBB. However, marked neuroinflammation was observed only in sfED group mice. The consumption of ED and sfED significantly altered the blood pressure and plasma concentrations of inflammatory cytokines, TNF-a, IL-4, IL-6, and IL-10, and both increased plasma glucose. Correlation analyses showed significant associations between BBB dysfunction and hypotension, hyperglycaemia and cytokine dyshomeostasis. The intake of energy drink, particularly the sugar free formulation, may compromise the integrity of BBB and induce neuroinflammation via hypotension, hyperglycaemia and inflammatory pathways.
Collapse
Affiliation(s)
- Liam Graneri
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Virginie Lam
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,School of Population Health, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Zachary D'Alonzo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Michael Nesbit
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - John C L Mamo
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| | - Ryusuke Takechi
- Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia.,Curtin Medical School, Faculty of Health Science, Curtin University, Bentley, WA, Australia
| |
Collapse
|