1
|
Augmenting Peripheral Nerve Regeneration with Adipose-Derived Stem Cells. Stem Cell Rev Rep 2022; 18:544-558. [PMID: 34417730 PMCID: PMC8858329 DOI: 10.1007/s12015-021-10236-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
Peripheral nerve injuries (PNIs) are common and debilitating, cause significant health care costs for society, and rely predominately on autografts, which necessitate grafting a nerve section non-locally to repair the nerve injury. One possible approach to improving treatment is bolstering endogenous regenerative mechanisms or bioengineering new nervous tissue in the peripheral nervous system. In this review, we discuss critical-sized nerve gaps and nerve regeneration in rats, and summarize the roles of adipose-derived stem cells (ADSCs) in the treatment of PNIs. Several regenerative treatment modalities for PNI are described: ADSCs differentiating into Schwann cells (SCs), ADSCs secreting growth factors to promote peripheral nerve growth, ADSCs promoting myelination growth, and ADSCs treatments with scaffolds. ADSCs' roles in regenerative treatment and features are compared to mesenchymal stem cells, and the administration routes, cell dosages, and cell fates are discussed. ADSCs secrete neurotrophic factors and exosomes and can differentiate into Schwann cell-like cells (SCLCs) that share features with naturally occurring SCs, including the ability to promote nerve regeneration in the PNS. Future clinical applications are also discussed.
Collapse
|
2
|
Amiri A, Kashani MHG, Ghorbanian MT. Expression of neurotrophic factor genes by human adipose stem cells post-induction by deprenyl. Anat Cell Biol 2021; 54:74-82. [PMID: 33526752 PMCID: PMC8017458 DOI: 10.5115/acb.19.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 10/16/2020] [Accepted: 11/03/2020] [Indexed: 11/28/2022] Open
Abstract
Human adipose stem cells (hASCs) were introduced as appropriate candidate due to advantages like ease of isolation, in vitro expansion and lack of immune response. Deprenyl (Dep) was used to induce bone marrow stem cells into neuron-like cells. We investigated the Dep effect on neurotrophin genes expression in hASCs and their differentiation into neuron-like cells. The cells were isolated from small pieces of abdominal adipose tissue and subjected to flow cytometry to confirm purification. The osteogenic and adipogenic differentiation were identified. The proliferation rate and neurotrophin genes expression of treated cells were evaluated by MTT, TH immunostaining and RT-PCR. hASCs had positive response to CD44, CD73, CD90, CD105 markers and negative response to CD34 and CD45 markers and differentiated into adipocytes and osteocytes. Exposure to 10–7 M of Dep for 24 hours caused a significant increase of viable cells and BDNF, NTF-3 genes expression as compared to cultured cells in serum free medium and had no effect on the expression of NGF and GDNF genes. Based on our results, Dep is able to induce BDNF, NTF-3 and NTF-4 genes expression and neroun-like morphology in hASCs.
Collapse
Affiliation(s)
- Arezoo Amiri
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | | | | |
Collapse
|
3
|
Azandeh S, Nejad DB, Bayati V, Shakoor F, Varaa N, Cheraghian B. High mannoronic acid containing alginate affects the differentiation of Wharton's jelly-derived stem cells to hepatocyte-like cell. J Adv Pharm Technol Res 2019; 10:9-15. [PMID: 30815382 PMCID: PMC6383346 DOI: 10.4103/japtr.japtr_312_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
For transplantation of cell into injured tissues, cells should be transferred to the damaged site through an adequate carrier. Nevertheless, the nutrient-limited and hypoxic condition in the carrier can bring about broad cell death. This study set to assess the impact of alginate concentrations on the differentiation and the proliferation of cells encapsulated in alginate hydrogels. Human Wharton's Jelly-derived Mesenchymal Stem Cells (HWJ-MSCs) were encapsulated in two concentrations of alginate hydrogel. Then, the proliferation and the hepatic differentiation were evaluated with an MTT assay and the enzyme-linked immunosorbent assay software and urea production. The results demonstrated that the proliferation of cell and urea production in 1.5% alginate concentration was higher than in 2.5% alginate concentration in the hydrogels of alginate. We deduce that the optimized alginate hydrogel concentration is necessary for achieving comparable cell activities in three-dimensional culture.
Collapse
Affiliation(s)
- Saeed Azandeh
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Darioush Bijan Nejad
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Foroug Shakoor
- Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negar Varaa
- Department of Anatomical Science, Faculty of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Bahman Cheraghian
- Department of Biostatistics and Epidemiology, School of Public Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Sun X, Zhu Y, Yin HY, Guo ZY, Xu F, Xiao B, Jiang WL, Guo WM, Meng HY, Lu SB, Wang Y, Peng J. Differentiation of adipose-derived stem cells into Schwann cell-like cells through intermittent induction: potential advantage of cellular transient memory function. Stem Cell Res Ther 2018; 9:133. [PMID: 29751848 PMCID: PMC5948899 DOI: 10.1186/s13287-018-0884-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/11/2022] Open
Abstract
Background Peripheral nerve injury (PNI) is a worldwide issue associated with severe social and economic burden. Autologous nerve grafting, the gold standard treatment for peripheral nerve defects, still has a number of technical limitations. Tissue engineering technology is a novel therapeutic strategy, and mesenchymal stromal cells (MSCs) are promising seed cells for nerve tissue engineering. However, the efficiency of traditional methods for inducing the differentiation of MSCs to Schwann cell-like cells (SCLCs) remains unsatisfactory. Methods Here, we propose an intermittent induction method with alternate use of complete and incomplete induction medium to induce differentiation of adipose-derived stem cells (ASCs) to SCLCs. The time dependence of traditional induction methods and the efficiency of the intermittent induction method and traditional induction methods were evaluated and compared using immunocytochemistry, quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and co-culture with the dorsal root ganglion (DRG) in vitro. Cell transplantation was used to compare the effects of the traditional induction method and the intermittent induction method in repairing sciatic nerve defects in vivo. Results The results of the present study indicated that the intermittent induction method is more efficient than traditional methods for inducing ASCs to differentiate into SCLCs. In addition, SCLCs induced by this method were closer to mature myelinating Schwann cells and were capable of secreting neurotrophins and promoting DRG axon regeneration in vitro. Furthermore, SCLCs induced by the intermittent induction method could repair sciatic nerve defects in rats by cell transplantation in vivo more effectively than those produced by traditional methods. Conclusion Intermittent induction represents a novel strategy for obtaining seed cells for use in nerve tissue engineering. Electronic supplementary material The online version of this article (10.1186/s13287-018-0884-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xun Sun
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.,School of Medicine, Nankai University, No.94 Weijin Road, Tianjin, 300071, People's Republic of China
| | - Yun Zhu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, No.21 Sassoon Road, Pokfulam, 999077, Hong Kong
| | - He-Yong Yin
- Department of Surgery, Experimental Surgery and Regenerative Medicine, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, 80336, Munich, Germany
| | - Zhi-Yuan Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Feng Xu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Bo Xiao
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Wen-Li Jiang
- Department of Ultrasound, Beijing Hospital, National Center of Gerontology, No.1 Dahua Road, Beijing, 100730, People's Republic of China
| | - Wei-Min Guo
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Hao-Ye Meng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Shi-Bi Lu
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, People's Republic of China.
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Lab of Musculoskeletal Trauma & War Injuries, PLA, No.28 Fuxing Road, Beijing, 100853, People's Republic of China. .,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, 226007, People's Republic of China.
| |
Collapse
|
5
|
Xie A, Xue J, Shen G, Nie L. Thrombospondin-1 inhibits ossification of tissue engineered cartilage constructed by ADSCs. Am J Transl Res 2017; 9:3487-3498. [PMID: 28804565 PMCID: PMC5527263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
Cartilage tissue engineering provides a new method in the treatment of cartilage defects, and adipose derived stem cells seem to be an ideal seed cell in cartilage tissue engineering because of its characteristics. However, ossification after in vivo implantation of tissue engineered cartilage remains a challenge. Thrombospondin-1 which has been reported to have an inhibitory effect on angiogenesis, may play an important role in inhibiting the ossification of tissue engineered cartilage constructed by adipose derived stem cells. Therefore, the effect of thrombospondin-1 in inhibiting the ossification of tissue engineered cartilage was evaluated in this study. Lentivirus vectors carrying thrombospondin-1 cDNA were transfected into adipose derived stem cells, and the transfected cells were used in the experiments. The expression of thrombospondin-1 was evaluated by quantitative reverse transcriptase-polymerase chain reaction and western blot, and the effects of thrombospondin-1 over-expression on angiogenesis were analyzed by angiogenesis assays. The quality of tissue engineered cartilage and the degree of ossification were assessed by biomechanical and molecular biology methods. The results showed that thrombospondin-1 infected cells have a high expression of thrombospondin-1 in mRNA and protein level, which inhibited the tube formation of endothelial cells, indicating the anti-angiogenic effects. Gene expression analyses in vitro showed that thrombospondin-1 inhibits the osteogenic differentiation of adipose derived stem cells significantly, and the results of in vivo study revealed that thrombospondin-1 significantly inhibits the expression of osteogenic genes. Compared to that in the control group, tissue engineered cartilage constructed by thrombospondin-1 transfected adipose derived stem cells in vivo showed a higher GAG content and lower compressive modulus, which indicating lower level of ossification. In conclusion, the current study indicated that the anti-angiogenic factor thrombospondin-1 suppresses the osteogenic differentiation of adipose derived stem cells in vitro, and inhibits ossification of tissue engineered cartilage constructed by adipose derived stem cells in vivo.
Collapse
Affiliation(s)
- Aiguo Xie
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, School of Medicine, Shanghai Jiao Tong UniversityNo.639 Zhizaoju Road, Huangpu District, Shanghai 200011, P. R. China
| | - Jixin Xue
- Department of Hand and Plastic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical UniversityNo.109, Xueyuan West Road, Wenzhou 325027, Zhejiang, P. R. China
| | - Gan Shen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital, Nanjing Medical UniversityNo.121 Jiangjiayuan Road, Gulou District, Nanjing 210011, P. R. China
| | - Lanjun Nie
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital, Nanjing Medical UniversityNo.121 Jiangjiayuan Road, Gulou District, Nanjing 210011, P. R. China
| |
Collapse
|
6
|
Najafabadi MM, Bayati V, Orazizadeh M, Hashemitabar M, Absalan F. Impact of Cell Density on Differentiation Efficiency of Rat Adipose-derived Stem Cells into Schwann-like Cells. Int J Stem Cells 2016; 9:213-220. [PMID: 27788569 PMCID: PMC5155717 DOI: 10.15283/ijsc16031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 01/20/2023] Open
Abstract
Background and Objectives Schwann-like (SC-like) cells induced from adipose-derived stem cells (ASCs) may be one of the ideal alternative cell sources for obtaining Schwann cells (SCs). They can be used for treating peripheral nerve injuries. Co-culture with SCs or exposure to glial growth factors are commonly used for differentiation of ASCs to SC-like cells. However, the effect of initial cell density as an inductive factor on the differentiation potential of ASCs into the SC-like cells has not been yet investigated. Methods and Results ASCs were harvested from rat and characterized. The cells were seeded into the culture flasks at three different initial cell densities i.e. 2×103, 4×103 and 8×103 cells/cm2 an overnight and differentiated toward SC-like cells using glial growth factors. After two weeks, the differentiation rate of ASCs to SC-like cells at different densities was assessed by immunofluorescence, fluorescence-activated cell sorting analysis and real time RT-PCR. Expression of the typical SCs markers, S-100 proteins and glial fibrillary acidic protein (GFAP) protein, was observed in all cell densities groups although the number of S100-positive and GFAP-positive cells, and the expression of p75NTR mRNA, another SC marker, were significantly higher at the density of 8×103 cells/cm2 when compared with the other cell densities groups (p<0.001). Conclusions The results suggest that the higher differentiation rate of ASCs to SC-like cells can be obtained at initial cell density of 8×103 cells/cm2, possibly via increased cell-cell interaction and cell density-dependent influence of glial growth factors.
Collapse
Affiliation(s)
- Mahtab Maghzi Najafabadi
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Forouzan Absalan
- Cellular and Molecular Research Center, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
7
|
Haq SH. 5-Aza-2'-deoxycytidine acts as a modulator of chondrocyte hypertrophy and maturation in chick caudal region chondrocytes in culture. Anat Cell Biol 2016; 49:107-15. [PMID: 27382512 PMCID: PMC4927425 DOI: 10.5115/acb.2016.49.2.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/20/2016] [Accepted: 04/06/2016] [Indexed: 01/08/2023] Open
Abstract
This study was carried out to explore the effect of DNA hypomethylation on chondrocytes phenotype, in particular the effect on chondrocyte hypertrophy, maturation, and apoptosis. Chondrocytes derived from caudal region of day 17 embryonic chick sterna were pretreated with hypomethylating drug 5-aza-2'-deoxycytidine for 48 hours and then maintained in the normal culture medium for up to 14 days. Histological studies showed distinct morphological changes occurred in the pretreated cultures when compared to the control cultures. The pretreated chondrocytes after 7 days in culture became bigger in size and acquired more flattened fibroblastic phenotype as well as a loss of cartilage specific extracellular matrix. Scanning electron microscopy at day 7 showed chondrocytes to have increased in cell volume and at day 14 in culture the extracellular matrix of the pretreated cultures showed regular fibrillar structure heavily embedded with matrix vesicles, which is the characteristic feature of chondrocyte hypertrophy. Transmission electron microscopic studies indicated the terminal fate of the hypertrophic cells in culture. The pretreated chondrocytes grown for 14 days in culture showed two types of cells: dark cells which had condense chromatin in dark patches and dark cytoplasm. The other light chondrocytes appeared to be heavily loaded with endoplasmic reticulum indicative of very active protein and secretory activity; their cytoplasm had large vacuoles and disintegrating cytoplasm. The biosynthetic profile showed that the pretreated cultures were actively synthesizing and secreting type X collagen and alkaline phosphatase as a major biosynthetic product.
Collapse
Affiliation(s)
- Samina Hyder Haq
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|