1
|
Üremiş MM, Üremiş N, Gül M, Gül S, Çiğremiş Y, Durhan M, Türköz Y. Acrylamide, Applied During Pregnancy and Postpartum Period in Offspring Rats, Significantly Disrupted Myelination by Decreasing the Levels of Myelin-Related Proteins: MBP, MAG, and MOG. Neurochem Res 2024; 49:617-635. [PMID: 37989894 DOI: 10.1007/s11064-023-04053-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/06/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023]
Abstract
Acrylamide (ACR) is a colorless, odorless, and water-soluble solid molecule. In addition to being an important industrial material, ACR is found in fried and baked carbohydrate-rich foods. ACR is regarded as a typical axonal neurotoxin that induces neuropathy. The brain is protected from oxidative damage by vitamin E, which is regarded as the most powerful fat-soluble antioxidant vitamin. This study aimed to reveal the toxic effect of ACR on the development of myelin in the brain at the molecular level and to examine whether Vitamin E has a neuroprotective effect on the harmful effect of ACR. The study was started by dividing 40 pregnant rats into 4 groups and after lactation, the study was continued with offspring rats (females and males offspring rats) from each group. Offspring rats were equally divided into Control, Vitamin E, ACR, ACR + Vitamin E groups. Following the ACR administration, the Water Maze test was applied to evaluate cognitive function. To evaluate the level of demyelination and remyelination, MBP, MAG, and MOG proteins and mRNA levels were performed. In addition, the degeneration of myelin and glial cells was examined by immunohistochemistry and electron microscopic analysis. Analysis results showed that ACR administration decreased gene and protein levels of myelin-related proteins MBP, MAG, and MOG. The findings were confirmed by histopathological, immunohistochemical, and microscopic examinations. The application of vitamin E improved this negative effect of ACR. It has been observed that ACR may play a role in the pathogenesis of myelin-related neurodegenerative diseases by causing demyelination during gestation, lactation, and post-lactation. In addition, it has been understood that vitamin E supports myelination as a strong neuroprotective vitamin against the toxicity caused by ACR. Our research results suggest that acrylamide may play a role in the etiopathogenesis of demyelinating diseases such as multiple sclerosis in humans since fast-food-type nutrition is very common today and people are chronically exposed to acrylamide.
Collapse
Affiliation(s)
- Muhammed Mehdi Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Nuray Üremiş
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Semir Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yılmaz Çiğremiş
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Merve Durhan
- Department of Medical Biology and Genetics, Medical Faculty, Inonu University, Malatya, Turkey
| | - Yusuf Türköz
- Department of Medical Biochemistry, Medical Faculty, Inonu University, Malatya, Turkey.
| |
Collapse
|
2
|
De Falco E, Rigano D, Fico V, Vitti A, Barile G, Pergola M. Spontaneous Officinal Plants in the Cilento, Vallo di Diano and Alburni National Park: Tradition, Protection, Enhancement, and Recovery. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12030465. [PMID: 36771560 PMCID: PMC9919598 DOI: 10.3390/plants12030465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/13/2023] [Accepted: 01/15/2023] [Indexed: 05/27/2023]
Abstract
The aim of this study was to deepen our knowledge on the heritage and traditional uses of some medicinal plants of the Cilento, Vallo di Diano and Alburni National Park (Salerno province) and to evaluate their productive potential, in order to increase possible uses to recover and enhance the territory. Biometric surveys and biomass evaluation were carried out. Two types of aqueous extract were prepared using air-dried samples of six harvested species and tested for anti-germination activity on Lepidium sativum L. Hydrolates were recovered via steam distillation from aromatic species and the chemical-physical characteristics were determined. Historical evidence of industrial activity was collected in the territory of Sanza on Monte Cervati, where lavender essential oil has been distilled in the past century, and characterization of the essential oil components was carried out. The ethnobotanical uses detected mainly concerned traditional medicine and nutritional, ritual, or religious uses. The experimental results highlight that spontaneous medicinal plants could become potential sources of local economic development, with uses not only in the phytotherapeutic sector, but also in others, such as food and agriculture for weed control. Moreover, the evidence derived from industrial archeology could represent a further driving force for the enhancement of the territory's resources.
Collapse
Affiliation(s)
- Enrica De Falco
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Daniela Rigano
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| | - Vito Fico
- Associazione “Sanza Città della Lavanda”, 84030 Sanza, Italy
| | - Antonella Vitti
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Gaia Barile
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Maria Pergola
- Degree Course of Agriculture, Dipartimento di Farmacia, Università degli Studi di Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
3
|
Bodur M, Aydoğdu G, Özçelik AÖ, Yilmaz E. An in vitro Approach to Protective Effect of Lactoferrin on Acrylamide-induced Oxidative Damage. AN ACAD BRAS CIENC 2022; 94:e20201882. [PMID: 36477225 DOI: 10.1590/0001-3765202220201882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
Acrylamide is a compound that occurs with high temperature during food processing and causes oxidative damage. Recently, the importance of antioxidative components is increasing to prevent oxidative damage. Lactoferrin is an antioxidant protein mainly found in milk. Therefore, the aim of this study is to determine the dose-dependent protective effects of lactoferrin on oxidative damage caused by acrylamide. In this study, HepG2 cell lines were treated with lactoferrin doses (0, 25, 50, 100µM) and half maximal inhibitory concentration of acrylamide. After 24 hours malondialdehyde, superoxide dismutase, catalase and glutathione reductase levels were measured. Acrylamide significantly increased malondialdehyde levels in HepG2 cells compared to the control group; however, catalase, superoxide dismutase and glutathione reductace significantly reduced. On the other hand, added lactoferrin doses (50-100µM) significantly reduced lipid peroxidation levels. Besides, it was found that glutathione reductase, catalase and superoxide dismutase levels significantly increased. As a result, the protective effect of lactoferrin against the oxidative damage caused by acrylamide in HepG2 cells was determined. This effect is thought to be due to the antioxidant capacity of lactoferrin. In this context, it is recommended that more studies are carried out on the mechanism of action of lactoferrin on oxidative stress caused by acrylamide.
Collapse
Affiliation(s)
- Mahmut Bodur
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 06290, Ankara, Turkey
| | - Gülizar Aydoğdu
- Ordu University, Faculty of Science and Literature, Department of Molecular Biology and Genetics, 52200, Ordu, Turkey
| | - Ayşe Özfer Özçelik
- Ankara University, Faculty of Health Sciences, Department of Nutrition and Dietetics, 06290, Ankara, Turkey
| | - Erkan Yilmaz
- Ankara University, Biotechnology Institute, 06135, Ankara, Turkey
| |
Collapse
|
4
|
Lindeman B, Johansson Y, Andreassen M, Husøy T, Dirven H, Hofer T, Knutsen HK, Caspersen IH, Vejrup K, Paulsen RE, Alexander J, Forsby A, Myhre O. Does the food processing contaminant acrylamide cause developmental neurotoxicity? A review and identification of knowledge gaps. Reprod Toxicol 2021; 101:93-114. [PMID: 33617935 DOI: 10.1016/j.reprotox.2021.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/11/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
There is a worldwide concern on adverse health effects of dietary exposure to acrylamide (AA) due to its presence in commonly consumed foods. AA is formed when carbohydrate rich foods containing asparagine and reducing sugars are prepared at high temperatures and low moisture conditions. Upon oral intake, AA is rapidly absorbed and distributed to all organs. AA is a known human neurotoxicant that can reach the developing foetus via placental transfer and breast milk. Although adverse neurodevelopmental effects have been observed after prenatal AA exposure in rodents, adverse effects of AA on the developing brain has so far not been studied in humans. However, epidemiological studies indicate that gestational exposure to AA impair foetal growth and AA exposure has been associated with reduced head circumference of the neonate. Thus, there is an urgent need for further research to elucidate whether pre- and perinatal AA exposure in humans might impair neurodevelopment and adversely affect neuronal function postnatally. Here, we review the literature with emphasis on the identification of critical knowledge gaps in relation to neurodevelopmental toxicity of AA and its mode of action and we suggest research strategies to close these gaps to better protect the unborn child.
Collapse
Affiliation(s)
- Birgitte Lindeman
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ylva Johansson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Mathilda Andreassen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Trine Husøy
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Hubert Dirven
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Tim Hofer
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Helle K Knutsen
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ida H Caspersen
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristine Vejrup
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild E Paulsen
- Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Norway
| | - Jan Alexander
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Anna Forsby
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Oddvar Myhre
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
5
|
Ahmad Bainmahfouz FR, Ali SS, Al-Shali RA, El-Shitany NAEA. Vitamin E and 5-amino salicylic acid ameliorates acrylamide-induced peripheral neuropathy by inhibiting caspase-3 and inducible nitric oxide synthase immunoexpression. J Chem Neuroanat 2021; 113:101935. [PMID: 33588031 DOI: 10.1016/j.jchemneu.2021.101935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 01/30/2023]
Abstract
Acrylamide is a fundamental cause of accidental toxicity in humans. This study aimed to investigate the neuroprotective effect of vitamin E (Vit. E), 5-amino salicylic acid (5-ASA), and their combination against acrylamide-induced sciatic nerve toxicity. For this purpose, 25 male Wister rats were divided into 5 groups: control, acrylamide, acrylamide + Vit. E, acrylamide + 5-ASA, and acrylamide + Vit. E + 5-ASA. Food intake and body weight were assessed after 7 days. Furthermore, the gait score was also evaluated for each rat. The sciatic nerve was dissected, fixed, and processed for routine light and electron microscopic examination. Haematoxylin and eosin, osmium tetroxide for myelin sheath, and toluidine blue for semithin section were used. In addition, immunohistochemistry for caspase-3 and inducible nitric oxide synthase (iNOS) were performed. The results showed reduced food intake and body weight in acrylamide rats. Abnormal gait score was also recorded in acrylamide rats with significant improvement in Vit. E, and Vit. E + 5-ASA groups. Histologically, Vit. E and 5-ASA provided potential protection against decreased sciatic nerve axon density, disrupted myelination, and the alteration in the immunohistochemistry induced by acrylamide. Vit. E and its combination with 5-ASA provided more evident protection compared to 5-ASA alone. 5-ASA significantly decreased apoptotic cell death (caspase-3 immunoexpression) while Vit. E failed. Both Vit. E and 5-ASA significantly decreased iNOS immunoexpression in the sciatic nerve, where 5-ASA was superior to Vit. E. These findings concluded that both Vit. E and 5-ASA protect against acrylamide-induced peripheral neuropathy through downregulation of both caspase-3 and iNOS immunoexpression.
Collapse
Affiliation(s)
- Fatmah Rais Ahmad Bainmahfouz
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Anatomy, College of Medicine, University of Jeddah, Jeddah 21959, Saudi Arabia.
| | - Soad Shaker Ali
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Histology, College of Medicine, Assiut University, Assiut 71515, Egypt.
| | - Rasha Abdulrahman Al-Shali
- Department of Anatomy, Cytology, and Histology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nagla Abd El-Aziz El-Shitany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
6
|
Aldawood N, Alrezaki A, Alanazi S, Amor N, Alwasel S, Sirotkin A, Harrath AH. Acrylamide impairs ovarian function by promoting apoptosis and affecting reproductive hormone release, steroidogenesis and autophagy-related genes: An in vivo study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 197:110595. [PMID: 32304918 DOI: 10.1016/j.ecoenv.2020.110595] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Acrylamide (ACR) toxicity is quite common due to its widespread use in industry and due to the Maillard browning reaction that occurs in foods containing high concentrations of hydrocarbons subjected to high temperatures. This study aimed to elucidate the female reproductive toxicity of ACR in vivo. Fifty-day-old Wistar-Albino female rats were treated with different dosages of ACR (2.5, 10, and 50 mg/kg/day). After treatment, the animals were sacrificed, and serum and ovary samples were collected for histological examination, hormone analysis, TUNEL analysis, and RT-PCR studies. We found that ACR acts by significantly reducing ovarian weight and serum progesterone and estradiol concentrations. In addition, ACR treatment led to pyknotic, heterochromatic characteristics and nuclear fragmentation, as evidenced by hematoxylin staining. The TUNEL assay revealed that granulosa cells were affected after the oral administration of ACR, leading to the apoptosis of follicles at different stages of growth. Compared with the control condition, high doses of ACR (50 mg/kg/day) significantly induced the overexpression of INSL3, CYP17a, IGF1, ESR1, ESR2, ATG5, ATG12 and LC3 in the ovary. Moreover, LC3 mRNA levels significantly increased with increasing doses of ACR (2.5, 10 and 50 mg/kg/day), suggesting that ACR treatment induced autophagy. In conclusion, ACR induced ovarian dysfunction by affecting steroid hormone release, increasing apoptosis and mRNA levels of autophagy-related genes. The eventual correlation between apoptotic granulosa cell death and autophagy needs to be further explored.
Collapse
Affiliation(s)
- Nouf Aldawood
- King Saud University, Department of Zoology, College of Science
| | | | - Shamsa Alanazi
- King Saud University, Department of Zoology, College of Science
| | - Nabil Amor
- King Saud University, Department of Zoology, College of Science
| | - Saleh Alwasel
- King Saud University, Department of Zoology, College of Science
| | - Alexander Sirotkin
- Department of Zoology and Anthropology, Constantine the Philosopher University, 949 74, Nitra, Slovakia
| | | |
Collapse
|
7
|
Radad K, Amir YE, Al-Emam A, Al-Shraim M, Bin-Jaliah I, Krewenka C, Moldzio R. Minocycline protects against acrylamide-induced neurotoxicity and testicular damage in Sprague-Dawley rats. J Toxicol Pathol 2020; 33:87-95. [PMID: 32425341 PMCID: PMC7218239 DOI: 10.1293/tox.2019-0066] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
This study investigated the protective effects of minocycline against acrylamide (ACR)-induced neurotoxicity and testicular damage in Sprague-Dawley rats. Forty rats were divided into five groups (eight rats each). Group I received saline (0.5 mL/rat) daily for 10 days and served as the untreated control group. Group II received ACR (30 mg/kg body weight (b.w.)) daily for 10 days. Group III received ACR (30 mg/kg b.w.) daily for 10 days and subsequently minocycline (60 mg/kg b.w.) for five days. Group IV received ACR (30 mg/kg b.w.) daily for 10 days followed by saline for five days and served as the control group for the ACR-minocycline-treated group. Group V received minocycline (60 mg/kg b.w.) for five days. All treatments were administered orally. Rats in group I and V showed normal locomotor behavior and normal histology of the brain and testes. Administration of ACR (Group II and IV) resulted in weight loss and gait abnormalities. Furthermore, neuronal degeneration in the hippocampus and cerebellum and degeneration of the seminiferous tubular epithelium with formation of spermatid giant cells were observed. Ultrastructurally, ACR specifically damaged spermatogonia and spermatocytes. Acrylamide was also seen to cause a significant increase of malondialdehyde levels in the brain and testes. Treatment of ACR-administered rats with minocycline (Group III) significantly alleviated the loss of body weight and improved locomotor function. Minocycline also ameliorated neuronal degeneration and seminiferous tubular damage and decreased malondialdehyde concentrations. In conclusion, minocycline protects against neurotoxic effects of acrylamide and seminiferous tubular damage. Decreasing lipid peroxidation by minocycline might play a role in such protection.
Collapse
Affiliation(s)
- Khaled Radad
- Department of Pathology, College of Medicine, King Khalid University, P.O.Box: 641, Abha, 61421, Aseer, Saudi Arabia
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Yassmin El Amir
- Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, P.O.Box: 641, Abha, 61421, Aseer, Saudi Arabia
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mubarak Al-Shraim
- Department of Pathology, College of Medicine, King Khalid University, P.O.Box: 641, Abha, 61421, Aseer, Saudi Arabia
| | - Ismaeel Bin-Jaliah
- Department of Physiology, College of Medicine, King Khalid University, P.O.Box: 641, Abha, 61421, Aseer, Saudi Arabia
| | - Christopher Krewenka
- Institute of Medical Biochemistry, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Austria
| | - Rudolf Moldzio
- Institute of Medical Biochemistry, Department for Biomedical Sciences, University of Veterinary Medicine Vienna, Veterinaerplatz 1, A-1210, Austria
| |
Collapse
|
8
|
Tabeshpour J, Mehri S, Abnous K, Hosseinzadeh H. Neuroprotective Effects of Thymoquinone in Acrylamide-Induced Peripheral Nervous System Toxicity Through MAPKinase and Apoptosis Pathways in Rat. Neurochem Res 2019; 44:1101-1112. [PMID: 30725239 DOI: 10.1007/s11064-019-02741-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022]
Abstract
Acrylamide (ACR) is extensively used in industrial areas and has been demonstrated to induce neurotoxicity via oxidative stress and apoptosis. In this study, we assessed the probable protective effects of thymoquinone (TQ), an active constituent of Nigella sativa, against ACR-induced neurotoxicity. ACR (50 mg/kg, i.p., for 11 days) and TQ (2.5, 5 and 10 mg/kg, i.p., for 11 days) were administered to rats. On 12th day, gait score was examined and rats were sacrificed. Malondialdehyde (MDA) and reduced glutathione (GSH) contents were determined in sciatic nerve. Furthermore, western blotting was conducted. The exposure of rats to ACR caused severe gait disabilities. The MDA and GSH contents were increased and decreased, respectively. ACR decreased P-ERK/ERK ratio and myelin basic protein (MBP) content, but significantly increased P-JNK/JNK, P-P38/P38, Bax/Bcl-2 ratios and caspase 3 and 9 levels. Concurrently administration of TQ (5 and 10 mg/kg) with ACR, prevented gait abnormalities and meaningfully reduced MDA and elevated the GSH contents. Furthermore, TQ (5 mg/kg) elevated the P-ERK/ERK ratio and MBP content while reduced the P-JNK/JNK, P-P38/P38 ratios and apoptotic markers. MAP kinase and apoptosis signaling pathways were involved in ACR-induced neurotoxicity in rat sciatic nerve and TQ significantly reduced ACR neurotoxicity. TQ afforded neuroprotection, in part, due to its anti-oxidative stress and anti-apoptotic mechanisms.
Collapse
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. .,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Azari A, Shokrzadeh M, Zamani E, Amani N, Shaki F. Cerium oxide nanoparticles protects against acrylamide induced toxicity in HepG2 cells through modulation of oxidative stress. Drug Chem Toxicol 2018; 42:54-59. [PMID: 29871546 DOI: 10.1080/01480545.2018.1477793] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Acrylamide (AA) is a toxic chemical compound found in cooked foods. Considerable evidences suggest that oxidative stress and mitochondrial dysfunction are contributed to AA toxicity. Ceric oxide (CeO2) nanoparticles (nano-ceria) have the potential to be developed as a therapeutic for oxidative stress insults due to their catalytic antioxidant properties. In this study we investigated, whether nano-ceria exerted a protective effect against AA-induced cytotoxicity and oxidative damage. HepG2 human cancer cell lines were exposed to nano-ceria (50, 100, and 200 µM) and after 30 min, AA in the half maximal inhibitory concentration (IC50) concentration (200 µM) was added to the cells. Twenty four hours later, cellular viability, reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and cellular levels of glutathione (GSH) were assayed. AA decreased cell viability and pretreatment with nano-ceria significantly decreased AA-induced cytotoxicity. In addition, nano-ceria alleviated AA-induced ROS generation and LPO and depressed GSH level. Our results suggested that nano-ceria prevented cellular and oxidative damage induced by AA.
Collapse
Affiliation(s)
- Aala Azari
- a Pharmaceutical Sciences Research Center , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Mohammad Shokrzadeh
- a Pharmaceutical Sciences Research Center , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Ehsan Zamani
- c Department of Toxicology and Pharmacology, Faculty of Pharmacy , Guilan University of Medical Sciences , Rasht , Iran
| | - Nahid Amani
- a Pharmaceutical Sciences Research Center , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| | - Fatemeh Shaki
- a Pharmaceutical Sciences Research Center , Mazandaran University of Medical Sciences , Sari , Iran.,b Department of Toxicology and Pharmacology, Faculty of Pharmacy , Mazandaran University of Medical Sciences , Sari , Iran
| |
Collapse
|
10
|
Lee S, Park HR, Lee JY, Cho JH, Song HM, Kim AH, Lee W, Lee Y, Chang SC, Kim HS, Lee J. Learning, memory deficits, and impaired neuronal maturation attributed to acrylamide. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:254-265. [PMID: 29473799 DOI: 10.1080/15287394.2018.1440184] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Acrylamide (ACR) is a neurotoxin known to produce neurotoxicity characterized by ataxia, skeletal muscle weakness, cognitive impairment, and numbness of the extremities. Previously, investigators reported that high-dose (50 mg/kg) ACR impaired hippocampal neurogenesis and increased neural progenitor cell death; however, the influence of subchronic environmentally relevant low dose-(2, 20, or 200 μg/kg) ACRs have not been examined in adult neurogenesis or cognitive function in mice. Accordingly, the aim of the present study was to investigate whether low-dose ACR adversely affected mouse hippocampal neurogenesis and neurocognitive functions. Male C57BL/6 mice were orally administered vehicle or ACR at 2, 20, or 200 μg/kg/day for 4 weeks. ACR did not significantly alter the number of newly generated cells or produce neuroinflammation or neuronal loss in hippocampi. However, behavioral studies revealed that 200 μg/kg ACR produced learning and memory impairment. Furthermore, incubation of ACR with primary cultured neurons during the developmental stage was found to delay neuronal maturation without affecting cell viability indicating the presence of developmental neurotoxicity. These findings indicate that although exposure to in vivo low-dose ACR daily for 4 weeks exerted no apparent marked effect on hippocampal neurogenesis, in vitro observations in primary cultured neurons noted adverse effects on learning and memory impairment suggestive of neurotoxic actions.
Collapse
Affiliation(s)
- Seulah Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Hee Ra Park
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Joo Yeon Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Jung-Hyun Cho
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Hye Min Song
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Ah Hyun Kim
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Wonjong Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Yujeong Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| | - Seung-Cheol Chang
- b Institute of BioPhysio Sensor Technology , Pusan National University , Busan , Republic of Korea
| | - Hyung Sik Kim
- c School of Pharmacy , Sungkyunkwan University , Suwon , Republic of Korea
| | - Jaewon Lee
- a Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention , Pusan National University , Busan , Republic of Korea
| |
Collapse
|
11
|
Prats E, Gómez-Canela C, Ben-Lulu S, Ziv T, Padrós F, Tornero D, Garcia-Reyero N, Tauler R, Admon A, Raldúa D. Modelling acrylamide acute neurotoxicity in zebrafish larvae. Sci Rep 2017; 7:13952. [PMID: 29066856 PMCID: PMC5655329 DOI: 10.1038/s41598-017-14460-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
Acrylamide (ACR), a type-2 alkene, may lead to a synaptopathy characterized by ataxia, skeletal muscles weakness and numbness of the extremities in exposed human and laboratory animals. Currently, only the mildly affected patients undergo complete recovery, and identification of new molecules with therapeutic bioactivity against ACR acute neurotoxicity is urgently needed. Here, we have generated a zebrafish model for ACR neurotoxicity by exposing 5 days post-fertilization zebrafish larvae to 1 mM ACR for 3 days. Our results show that zebrafish mimics most of the pathophysiological processes described in humans and mammalian models. Motor function was altered, and specific effects were found on the presynaptic nerve terminals at the neuromuscular junction level, but not on the axonal tracts or myelin sheath integrity. Transcriptional markers of proteins involved in synaptic vesicle cycle were selectively altered, and the proteomic analysis showed that ACR-adducts were formed on cysteine residues of some synaptic proteins. Finally, analysis of neurotransmitters profile showed a significant effect on cholinergic and dopaminergic systems. These data support the suitability of the developed zebrafish model for screening of molecules with therapeutic value against this toxic neuropathy.
Collapse
Affiliation(s)
- Eva Prats
- CID-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | | | - Shani Ben-Lulu
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | - Francesc Padrós
- Fish Diseases Diagnostic Service, Facultat de Veterinària. Universitat Autònoma de Barcelona, 08190, Bellaterra (Cerdanyola del Vallès), Spain
| | | | - Natàlia Garcia-Reyero
- Environmental Laboratory-US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Romà Tauler
- IDAEA-CSIC, Jordi Girona 18, 08034, Barcelona, Spain
| | - Arie Admon
- The Smoler Proteomics Center and the Department of Biology, Technion - Israel Institute of Technology, Haifa, Israel
| | | |
Collapse
|
12
|
Oda SS. Metformin Protects against Experimental Acrylamide Neuropathy in Rats. Drug Dev Res 2017; 78:349-359. [DOI: 10.1002/ddr.21400] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/15/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Samah S. Oda
- Department of Pathology; Faculty of Veterinary Medicine, Alexandria University, Edfina-Rashid-Behera; Egypt
| |
Collapse
|
13
|
Zhao M, Wang FSL, Hu XS, Chen F, Chan HM. Effect of acrylamide-induced neurotoxicity in a primary astrocytes/microglial co-culture model. Toxicol In Vitro 2016; 39:119-125. [PMID: 27836571 DOI: 10.1016/j.tiv.2016.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/04/2016] [Accepted: 11/05/2016] [Indexed: 12/12/2022]
Abstract
Acrylamide (AA), is a common food contaminant generated by heat processing. Astrocytes and microglia are the two major glial cell types in the brain that play pivotal but different roles in maintaining optimal brain function. The objective of this study is to investigate the neurotoxicity of AA, using a primary astrocytes/microglia co-culture model. Co-cultural cells obtained from Balb/c mice were cultured and treated with 0-1.0mM AA for 24-96h. Cell viability, reactive oxygen species (ROS) generation, oxidative end produces formation and glutathione (GSH) levels were measured. The expression of nuclear-E2-related factor 2(Nrf2), and nuclear factor kappa-beta (NF-κB) and selected down-stream genes were measured. Results showed that AA treatment led toa dose-dependent toxicity. Oxidative stress was induced as indicated by an increase of ROS, a decrease of GSH levels, and an increase in the formation of 4-hydroxynonenal-adduct and 8-hydroxy-2-deoxyguanosine-adduct. Both Nrf2 and NF-κB pathway contributed to the initiation of oxidative stress but the timing of two factors was different. Nrf2 and its related downstream genes were activated earlier than that in NF-κB pathway. In conclusion, AA-induced neurotoxicity attribute to oxidative stress via Nrf2 and NF-κB pathway. Moreover, the co-culture cell model was proven to be a viable model to study AA neurotoxicity.
Collapse
Affiliation(s)
- Mengyao Zhao
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China; Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Fu Sheng Lewis Wang
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Xiao Song Hu
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China.
| | - Hing Man Chan
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|