1
|
Wang B, Wang Y, Chen Y, Sun X, Xu J, Zhu J, Zhang Y. Red-Fleshed Apple Flavonoids Extract Alleviates Male Reproductive Injury Caused by Busulfan in Mice. Nutrients 2023; 15:3288. [PMID: 37571225 PMCID: PMC10420934 DOI: 10.3390/nu15153288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
In this research, we analyzed the protective effects of red-fleshed apple flavonoid extracts (RAFEs) on male reproductive injury induced by busulfan, using both in vitro and in vivo models. In the cell-based experiments, RAFEs significantly improved cell viability and proliferation rates compared to control groups. Similarly, in vivo testing with male mice showed that RAFEs and whole apple flavonoid extracts (WAFEs) enhanced various biochemical and liver function-related indicators in the testes; however, RAFEs demonstrated superior efficacy in mitigating testicular damage. Through immunohistochemistry, qRT-PCR, and Western blotting, we found that RAFEs notably enhanced the expression of spermatogenesis-related genes. Moreover, RAFEs increased the expression of oxidative stress- and apoptosis-related genes, thereby effectively reducing oxidative damage in the testes. These findings highlight the potential of RAFEs as natural agents for the prevention and treatment of male reproductive injury, paving the way for future research and potential therapeutic applications.
Collapse
Affiliation(s)
- Bin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yizhou Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Xiaohong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jihua Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China; (X.S.); (J.X.)
| | - Jun Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China; (B.W.); (Y.W.); (Y.C.); (J.Z.)
- China Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao 266109, China
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257300, China
| |
Collapse
|
2
|
Sharma P, Kaushal N, Saleth LR, Ghavami S, Dhingra S, Kaur P. Oxidative stress-induced apoptosis and autophagy: Balancing the contrary forces in spermatogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166742. [PMID: 37146914 DOI: 10.1016/j.bbadis.2023.166742] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Spermatogenesis is a complex process in the testis and is a cornerstone of male infertility. The abundance of unsaturated fatty acid and high cell division rate make male germs cells prone to DNA deterioration. ROS-mediated oxidative stress triggers DNA damage, autophagy, and apoptosis in male germ cells, which are critical causative factors that lead to male infertility. The complex connection and molecular crosstalk between apoptosis and autophagy is seen at multifaceted levels that interconnect the signaling pathways of these two processes. Multilevel interaction between apoptosis and autophagy is a seamless state of survival and death in response to various stressors. Interaction between multiple genes and proteins such as the mTor signaling pathway, Atg12 proteins, and the death adapter proteins, such as Beclin 1, p53, and Bcl-2 family proteins, validates such a link between these two phenomena. Testicular cells being epigenetically different from somatic cells, undergo numerous significant epigenetic transitions, and ROS modulates the epigenetic framework of mature sperm. Epigenetic deregulation of apoptosis and autophagy under oxidative stress conditions can cause sperm cell damage. The current review recapitulates the current role of prevailing stressors that generate oxidative stress leading to the induction of apoptosis and autophagy in the male reproductive system. Considering the pathophysiological consequences of ROS-mediated apoptosis and autophagy, a combinatorial approach, including apoptosis inhibition and autophagy activation, a therapeutic strategy to treat male idiopathic infertility. Understanding the crosslink between apoptosis and autophagy under stress conditions in male germ cells may play an essential role in developing therapeutic strategies to treat infertility.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Leena Regi Saleth
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; Research Institute of Hematology and Oncology, Cancer Care Manitoba, Winnipeg, MB R3E 0V9, Canada; Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
| | - Sanjiv Dhingra
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R2H 2A6, Canada
| | - Parminder Kaur
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh 160024, India.
| |
Collapse
|
3
|
Santamaría L, Ingelmo I, Teba F. Dimensional study of prostate cancer using stereological tools. J Anat 2021; 240:145-154. [PMID: 34355401 PMCID: PMC8655212 DOI: 10.1111/joa.13524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2021] [Accepted: 07/20/2021] [Indexed: 11/26/2022] Open
Abstract
This study analyzes the dimensional changes of the glands from prostate cancer by applying stereology to estimate the variations in volume, length, surface, and cellular densities of tumor acini. Normal and tumor acini were visualized using immunohistochemistry for cytokeratin18. On immunostained sections, parameters related to the dimensions and cell population of prostate acini were measured. The immunohistochemical expression of proliferative cell nuclear antigen was also measured to correlate the quantitative changes estimated with the proliferative activity of the epithelium. The average cell volume in normal and tumor epithelium was estimated using the method of the nucleator. The relative size of the acini was similar in the carcinoma compared with the normal prostate. Within the acini, the fraction of acinar volume occupied by the epithelium was significantly higher in cancer than in the nontumor prostate. Conversely, the glandular lumen of the cancer acini is lower than in the normal acini. The significant increase of acinar length density in the carcinoma indicates that the glandular tree's growth in the carcinoma is higher and with more branches than in the case of nonneoplastic glands. The basal surface density is higher in the carcinoma than in the controls. The number of epithelial cells per unit length of acini was significantly decreased in the neoplastic glands. This "dilution" of the cell population along the cancer acinus can be explained by the significant increase in the tumor cell's mean cell volume.
Collapse
Affiliation(s)
- Luis Santamaría
- Department of Anatomy, Histology, and Neuroscience, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Fernando Teba
- Department of Surgery (Urology), Hospital de La Princesa, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Lu J, Liu Z, Shu M, Zhang L, Xia W, Tang L, Li J, Huang B, Li H. Human placental mesenchymal stem cells ameliorate chemotherapy-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. Stem Cell Res Ther 2021; 12:199. [PMID: 33743823 PMCID: PMC7981860 DOI: 10.1186/s13287-021-02275-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 01/18/2023] Open
Abstract
Background The side effects of busulfan on male reproduction are serious, so fertility preservation in children undergoing busulfan treatment is a major worldwide concern. Human placental mesenchymal stem cells (hPMSCs) have advantages such as stable proliferation and lower immunogenicity that make them an ideal material for stimulating tissue repair, especially restoring spermatogenesis. The protective effects of hPMSCs in busulfan-induced Sertoli cells and in busulfan-treated mouse testes have not been determined. Our study aimed to elaborate the protective effect and potential mechanisms of hPMSCs in busulfan-treated testes and Sertoli cells. Methods First, we developed a mouse model of busulfan-induced testicular toxicity in vivo and a mouse Sertoli cell line treated with busulfan in vitro to assess the protective effect and mechanisms of hPMSC treatment on spermatogenesis. Then, the length, width, and weight of the testes were monitored using Vernier calipers. Furthermore, at 1 week and 4 weeks after the transplantation of hPMSCs, histological sections of testes were stained with hematoxylin-eosin, and the seminiferous tubules with fluid-filled cavities were counted. Through ELISA analysis, testosterone levels and MDA, SOD, LDH, and CAT activities, which are associated with ROS, were detected. Markers of ROS, proliferation (Ki67), and apoptosis (Annexin V) were evaluated by FACS. Next, the fluorescence intensity of proliferation markers (BrdU and SCP3), an antioxidant marker (SIRT1), a spermatogenesis marker (PLZF), and autophagy-related genes (P62 and LC3AB) were detected by fluorescence microscopy. The mRNA expression of γ-H2AX, BRCA1, PARP1, PCNA, Ki67, P62, and LC3 was determined by qRT-PCR. Results hPMSCs restored disrupted spermatogenesis, promoted improved semen parameters, and increased testosterone levels, testis size, and autophagy in the testis toxicity mouse model induced by busulfan. hPMSCs suppressed the apoptosis of Sertoli cells and enhanced their rate of proliferation in vitro. Additionally, hPMSCs protected against oxidative stress and decreased oxidative damage in the testis toxicity mouse model induced by busulfan. Furthermore, hPMSCs increased the expression of proliferation genes (PCNA and KI67) and decreased the mRNA levels of apoptotic genes such as γ-H2AX, BRCA1, and PARP1. Conclusions This research showed that hPMSC injection ameliorated busulfan-induced damage in the testis by reducing apoptosis/oxidative stress and promoting autophagy. The present study offers an idea for a new method for clinical treatment of chemotherapy-induced spermatogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02275-z.
Collapse
Affiliation(s)
- Jiafeng Lu
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Zhenxing Liu
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Mingkai Shu
- Medical College of Soochow University, 199 Renai Road, Industrial Park District, Suzhou, 215123, China
| | - Liya Zhang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Wenjuan Xia
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Liuna Tang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Jincheng Li
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China
| | - Boxian Huang
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China.
| | - Hong Li
- Center of Reproduction and Genetics, The affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
5
|
The Therapeutic Potential of Amniotic Fluid-Derived Stem Cells on Busulfan-Induced Azoospermia in Adult Rats. Tissue Eng Regen Med 2021; 18:279-295. [PMID: 33713308 DOI: 10.1007/s13770-020-00309-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/20/2020] [Accepted: 10/13/2020] [Indexed: 10/21/2022] Open
Abstract
BACKGROUND Busulfan is an alkylating chemotherapeutic agent that is routinely prescribed for leukemic patients to induce myelo-ablation. However, it also results in azoospermia and infertility in cancer survivors. This research was constructed to explore the possible therapeutic role of amniotic fluid-derived stem cells (AFSCs) in improving busulfan-induced azoospermia in adult rats. METHODS Forty two adult male albino rats were randomized into: (1) control group, (2) azoospermia group, (3) spontaneous recovery group, and (4) AFSCs-treated group, in which AFSCs were transplanted through their injection into the testicular efferent ducts. The assessment included a histo-pathological examination of the seminiferous tubules by the light and transmission electron microscopes. Additionally, the confocal laser scanning microscope was used for confirmation of homing of the implanted cells. Moreover, we conducted an immuno-fluorescence study for detection of the proliferating cell nuclear antigen (PCNA) in the spermatogenic cells, epididymal sperm count, and a histo-morphometric study. RESULTS AFSCs successfully homed over the basement membrane of the injured seminiferous tubules. They greatly attenuated busulfan-induced degenerative and oxidative changes. They also caused a re-expression of PCNA in the germ cells, leading to resumption of spermatogenesis and re-appearance of spermatozoa. CONCLUSION AFSCs could be a promising treatment modality for male infertility induced by chemotherapy, as they possess prominent regenerative, anti-apoptotic, and anti-inflammatory potentials.
Collapse
|
6
|
Yu S, Zhao Y, Zhang FL, Li YQ, Shen W, Sun ZY. Chestnut polysaccharides benefit spermatogenesis through improvement in the expression of important genes. Aging (Albany NY) 2020; 12:11431-11445. [PMID: 32568099 PMCID: PMC7343452 DOI: 10.18632/aging.103205] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/22/2022]
Abstract
Recently there has been a continuing worldwide decrease in the quality of human spermatozoa, especially in spermatozoa motility and concentration. Many factors are involved in this decline, and great efforts have been made to rescue spermatogenesis; however, there has been little progress in the improvement of sperm quality. Chestnuts are used in traditional Chinese medicine; their major active components are chestnut polysaccharides (CPs). CPs have many biological activities but their effects on spermatogenesis are unknown. The current investigation was designed to explore the impact of CPs on spermatogenesis and the underlying mechanisms. We demonstrated that CPs significantly increased sperm motility and concentration (4-fold and 12-fold, respectively), and improved seminiferous tubule development by increasing the number of germ cells after busulfan treatment. CPs dramatically rescued the expression of important genes and proteins (STRA8, DAZL, SYCP1, SYCP3, TNP1 etc.) in spermatogenesis. Furthermore, CPs increased the levels of hormone synthesis proteins such as CYP17A1 and HSD17β1. All the data suggested that CPs improved the testicular microenvironment to rescue spermatogenesis. With CPs being natural products, they may be an attractive alternative for treating infertile patients in the future. At the same time, the deep underlying mechanisms of their action need to be explored.
Collapse
Affiliation(s)
- Shuai Yu
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Center for Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yong Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fa-Li Zhang
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ya-Qi Li
- Urology Department, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, China
| | - Wei Shen
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhong-Yi Sun
- Urology Department, Peking University Shenzhen Hospital, Shenzhen 518036, China.,Center for Reproductive Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
7
|
Zhao Y, Zhang P, Ge W, Feng Y, Li L, Sun Z, Zhang H, Shen W. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Am J Cancer Res 2020; 10:3308-3324. [PMID: 32194870 PMCID: PMC7053202 DOI: 10.7150/thno.43189] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Rationale: Busulfan is currently an indispensable anti-cancer drug, particularly for children, but the side effects on male reproduction are so serious that critical drug management is needed to minimize any negative impact. Meanwhile, alginate oligosaccharides (AOS) are natural products with many consequent advantages, that have attracted a great deal of pharmaceutical attention. In the current investigation, we performed single-cell RNA sequencing on murine testes treated with busulfan and/or AOS to define the mitigating effects of AOS on spermatogenesis at the single cell level. Methods: Testicular cells (in vivo) were examined by single cell RNA sequencing analysis, histopathological analysis, immunofluorescence staining, and Western blotting. Testes samples (ex vivo) underwent RNA sequencing analysis. Blood and testicular metabolomes were determined by liquid chromatography-mass spectrometry (LC/MS). Results: We found that AOS increased murine sperm concentration and motility, and rescued busulfan disrupted spermatogenesis through improving (i) the proportion of germ cells, (ii) gene expression important for spermatogenesis, and (iii) transcriptional factors in vivo. Furthermore, AOS promoted the ex vivo expression of genes important for spermatogenesis. Finally, our results showed that AOS improved blood and testis metabolomes as well as the gut microbiota to support the recovery of spermatogenesis. Conclusions: AOS could be used to improve fertility in patients undergoing chemotherapy and to combat other factors that induce infertility in humans.
Collapse
|
8
|
Salahshoor MR, Mirzaei F, Roshankhah S, Jalili P, Jalili C. Genistein improve nicotine toxicity on male mice pancreas. Anat Cell Biol 2019; 52:183-190. [PMID: 31338235 PMCID: PMC6624331 DOI: 10.5115/acb.2019.52.2.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/11/2019] [Accepted: 02/18/2019] [Indexed: 12/23/2022] Open
Abstract
Nicotine is the most toxic factor of tobacco. Genistein is a phytoestrogen and antioxidant that has numerous health benefits. The aim of this study is to evaluate the effects of genistein against toxic properties of nicotine to the pancreas of mice. For this purpose, 48 male mice were randomly assigned into six groups (n=8): normal control, nicotine control (2.5 mg/kg), genistein (25 and 50 mg/kg), and nicotine+genistein (25 and 50 mg/kg) treated groups. Various doses of genistein and genistein+nicotine were administered intraperitoneally to animals for 4 weeks. The weight of pancreas, total antioxidant capacity and nitrite oxide of serum, insulin levels, and the number and diameter of islets of Langerhans were investigated. Nicotine administration reduced significantly total antioxidant capacity, insulin, pancreas weight, and the number and diameter of islets of Langerhans and increased nitrite oxide in serum compared to the control normal group (P<0.05). Conversely, genistein and genistein+nicotine increased significantly insulin, total antioxidant capacity, and the number and diameter islets of Langerhans and decreased serum nitrite oxide compared to the nicotine control group. It seems that the genistein can improve pancreas damage following the nicotine administration.
Collapse
Affiliation(s)
- Mohammad Reza Salahshoor
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Mirzaei
- Department of Anatomical Sciences, Medical School, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Shiva Roshankhah
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parnian Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
9
|
Liu FJ, Dong WY, Zhao H, Shi XH, Zhang YL. Effect of molybdenum on reproductive function of male mice treated with busulfan. Theriogenology 2019; 126:49-54. [PMID: 30530157 DOI: 10.1016/j.theriogenology.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 01/23/2023]
|