Abstract
PURPOSE
The colonoscopy adenoma detection rate depends largely on physician experience and skill, and overlooked colorectal adenomas could develop into cancer. This study assessed a system that detects polyps and summarizes meaningful information from colonoscopy videos.
METHODS
One hundred thirteen consecutive patients had colonoscopy videos prospectively recorded at the Seoul National University Hospital. Informative video frames were extracted using a MATLAB support vector machine (SVM) model and classified as bleeding, polypectomy, tool, residue, thin wrinkle, folded wrinkle, or common. Thin wrinkle, folded wrinkle, and common frames were reanalyzed using SVM for polyp detection. The SVM model was applied hierarchically for effective classification and optimization of the SVM.
RESULTS
The mean classification accuracy according to type was over 93%; sensitivity was over 87%. The mean sensitivity for polyp detection was 82.1%, and the positive predicted value (PPV) was 39.3%. Polyps detected using the system were larger (6.3 ± 6.4 vs. 4.9 ± 2.5 mm; P = 0.003) with a more pedunculated morphology (Yamada type III, 10.2 vs. 0%; P < 0.001; Yamada type IV, 2.8 vs. 0%; P < 0.001) than polyps missed by the system. There were no statistically significant differences in polyp distribution or histology between the groups. Informative frames and suspected polyps were presented on a timeline. This summary was evaluated using the system usability scale questionnaire; 89.3% of participants expressed positive opinions.
CONCLUSIONS
We developed and verified a system to extract meaningful information from colonoscopy videos. Although further improvement and validation of the system is needed, the proposed system is useful for physicians and patients.
Collapse