1
|
Yasarbas SS, Inal E, Yildirim MA, Dubrac S, Lamartine J, Mese G. Connexins in epidermal health and diseases: insights into their mutations, implications, and therapeutic solutions. Front Physiol 2024; 15:1346971. [PMID: 38827992 PMCID: PMC11140265 DOI: 10.3389/fphys.2024.1346971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
The epidermis, the outermost layer of the skin, serves as a protective barrier against external factors. Epidermal differentiation, a tightly regulated process essential for epidermal homeostasis, epidermal barrier formation and skin integrity maintenance, is orchestrated by several players, including signaling molecules, calcium gradient and junctional complexes such as gap junctions (GJs). GJ proteins, known as connexins facilitate cell-to-cell communication between adjacent keratinocytes. Connexins can function as either hemichannels or GJs, depending on their interaction with other connexons from neighboring keratinocytes. These channels enable the transport of metabolites, cAMP, microRNAs, and ions, including Ca2+, across cell membranes. At least ten distinct connexins are expressed within the epidermis and mutations in at least five of them has been linked to various skin disorders. Connexin mutations may cause aberrant channel activity by altering their synthesis, their gating properties, their intracellular trafficking, and the assembly of hemichannels and GJ channels. In addition to mutations, connexin expression is dysregulated in other skin conditions including psoriasis, chronic wound and skin cancers, indicating the crucial role of connexins in skin homeostasis. Current treatment options for conditions with mutant or altered connexins are limited and primarily focus on symptom management. Several therapeutics, including non-peptide chemicals, antibodies, mimetic peptides and allele-specific small interfering RNAs are promising in treating connexin-related skin disorders. Since connexins play crucial roles in maintaining epidermal homeostasis as shown with linkage to a range of skin disorders and cancer, further investigations are warranted to decipher the molecular and cellular alterations within cells due to mutations or altered expression, leading to abnormal proliferation and differentiation. This would also help characterize the roles of each isoform in skin homeostasis, in addition to the development of innovative therapeutic interventions. This review highlights the critical functions of connexins in the epidermis and the association between connexins and skin disorders, and discusses potential therapeutic options.
Collapse
Affiliation(s)
- S. Suheda Yasarbas
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Ece Inal
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - M. Azra Yildirim
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| | - Sandrine Dubrac
- Department of Dermatology, Venereology and Allergology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jérôme Lamartine
- Skin Functional Integrity Group, Laboratory for Tissue Biology and Therapeutics Engineering (LBTI) CNRS UMR5305, University of Lyon, Lyon, France
| | - Gulistan Mese
- Izmir Institute of Technology, Faculty of Science, Department of Molecular Biology and Genetics, Izmir, Turkiye
| |
Collapse
|
2
|
Jang AY, Choi J, Rod-In W, Choi KY, Lee DH, Park WJ. In Vitro Anti-Inflammatory and Skin Protective Effects of Codium fragile Extract on Macrophages and Human Keratinocytes in Atopic Dermatitis. J Microbiol Biotechnol 2024; 34:940-948. [PMID: 38314445 DOI: 10.4014/jmb.2312.12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Codium fragile has been traditionally used in oriental medicine to treat enterobiasis, dropsy, and dysuria, and it has been shown to possess many biological properties. Atopic dermatitis (AD) is one of the types of skin inflammation and barrier disruption, which leads to chronic inflammatory skin diseases. In the current investigation, the protective effects of C. fragile extract (CFE) on anti-inflammation and skin barrier improvement were investigated. In LPS-stimulated RAW 264.7 cells, nitric oxide generation and the expression levels of interleukin (IL)-1β, IL-4, IL-6, iNOS, COX-2, and tumor necrosis factor-alpha (TNF)-α were reduced by CFE. CFE also inhibited the phosphorylation of NF-κB-p65, ERK, p-38, and JNK. Additionally, CFE showed inhibitory activity on TSLP and IL-4 expression in HaCaT cells stimulated with TNF-α/interferon-gamma (IFN-γ). Enhanced expression of factors related to skin barrier function, FLG, IVL, and LOR, was confirmed. These findings implied that CFE may be used as a therapeutic agent against AD due to its skin barrier-strengthening and anti-inflammatory activities, which are derived from natural marine products.
Collapse
Affiliation(s)
- A-Yeong Jang
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - JeongUn Choi
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Weerawan Rod-In
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand
| | - Ki Young Choi
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Dae-Hee Lee
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Nbios Inc., Gangneung, Gangwon 25457, Republic of Korea
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| |
Collapse
|
3
|
Choi EH, Kang H. Importance of Stratum Corneum Acidification to Restore Skin Barrier Function in Eczematous Diseases. Ann Dermatol 2024; 36:1-8. [PMID: 38325428 PMCID: PMC10861303 DOI: 10.5021/ad.23.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 02/09/2024] Open
Abstract
Skin barrier function relies on three essential components: stratum corneum (SC) lipids, natural moisturizing factors (NMFs), and the acidic pH of the SC surface. Three endogenous pathways contribute to acidity: free fatty acids from phospholipids, trans-urocanic acid from filaggrin (FLG), and the sodium-proton antiporter (NHE1) activity. An acidic SC environment boosts the activity of enzymes to produce ceramides, which are vital for skin health. Conversely, an elevated pH can lead to increased skin infections, reduced lipid-processing enzyme activity, impaired permeability barrier recovery, and compromised integrity and cohesion of the SC due to increased serine protease (SP) activity. Elevated SC pH is observed in neonatal, aged, and inflamed skin. In atopic dermatitis (AD), it results from decreased NMF due to reduced FLG degradation, decreased fatty acids from reduced lamellar body secretion, and reduced lactic acid due to decreased sweating. Moreover, the imbalance between SP and SP inhibitors disrupts barrier homeostasis. However, acidifying the SC can help restore balance and reduce SP activity. Acidic water bathing has been found to be safe and effective for AD. In three different AD murine models, SC acidification prevented the progression of AD to respiratory allergies. In aging skin, a decrease in NHE1 leads to an increased skin pH. Mild acidic skin care products or moisturizers containing NHE1 activators can normalize skin pH and improve barrier function. In conclusion, maintaining the acidity of the SC is crucial for healthy skin barrier function, leading to significant benefits for various skin conditions, such as AD and aging-related skin issues.
Collapse
Affiliation(s)
- Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea.
| | - Hyun Kang
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
4
|
Fermented Angelicae tenussimae with Aspergillus oryzae Improves Skin Barrier Properties, Moisturizing, and Anti-Inflammatory Responses. Int J Mol Sci 2022; 23:ijms232012072. [PMID: 36292928 PMCID: PMC9602477 DOI: 10.3390/ijms232012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Angelicae tenussimae root has been used as a traditional medicine in Asia. Recently, anti-melanogenic and anti-photogenic effects of fermented A. tenuissima root (FAT) were identified. However, information about the anti-atopic dermatitis action of FAT is limited. Thus, the purpose of this study is to determine the applicability of FAT to AD by identifying the efficacy of FAT on the skin barrier and inflammatory response, which are the main pathogenesis of AD. Expression levels of skin barrier components and the production of inflammatory mediators in human keratinocyte and mouse macrophage cells were measured by quantitative RT-PCR or ELISA. FAT upregulated the expression of skin barrier components (filaggrin, involucrin, loricurin, SPTLC1) and inhibited the secretion of an inflammatory chemokine TARC in HaCaT cells. Furthermore, it suppressed pro-inflammatory cytokines (IL-6, TNF-α) and nitric oxide production in LPS-induced RAW264.7 cells. In addition, ligustilide increased filaggrin and SPTLC1, and also lowered pro-inflammatory mediators that increased in atopic environments, such as in FAT results. This means that ligustilide, one of the active ingredients derived from FAT, can ameliorate AD, at least in part, by promoting skin barrier formation and downregulating inflammatory mediators. These results suggest that FAT is a potential functional cosmetic material for the care and management of AD.
Collapse
|
5
|
Park CH, Min SY, Yu HW, Kim K, Kim S, Lee HJ, Kim JH, Park YJ. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int J Mol Sci 2020; 21:ijms21134620. [PMID: 32610574 PMCID: PMC7370139 DOI: 10.3390/ijms21134620] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022] Open
Abstract
Apigenin (4',5,7-trihydroxyflavone, flavonoid) is a phenolic compound that is known to reduce the risk of chronic disease owing to its low toxicity. The first study on apigenin analyzed its effect on histamine release in the 1950s. Since then, anti-mutation and antitumor properties of apigenin have been widely reported. In the present study, we evaluated the apigenin-mediated amelioration of skin disease and investigated its applicability as a functional ingredient, especially in cosmetics. The effect of apigenin on RAW264.7 (murine macrophage), RBL-2H3 (rat basophilic leukemia), and HaCaT (human immortalized keratinocyte) cells were analyzed. Apigenin (100 μM) significantly inhibited nitric oxide (NO) production, cytokine expression (interleukin (IL)-1β, IL6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase [iNOS]), and phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) in RAW264.7 cells. Apigenin (30 M) also inhibited the phosphorylation of signaling molecules (Lyn, Syk, phospholipase Cγ1, ERK, and JNK) and the expression of high-affinity IgE receptor FcεRIα and cytokines (tumor necrosis factor (TNF)-α, IL-4, IL-5, IL-6, IL-13, and COX-2) that are known to induce inflammation and allergic responses in RBL-2H3 cells. Further, apigenin (20 μM) significantly induced the expression of filaggrin, loricrin, aquaporin-3, hyaluronic acid, hyaluronic acid synthase (HAS)-1, HAS-2, and HAS-3 in HaCaT cells that are the main components of the physical barrier of the skin. Moreover, it promoted the expression of human β-defensin (HBD)-1, HBD-2, HBD-3, and cathelicidin (LL-37) in HaCaT cells. These antimicrobial peptides are known to play an important role in the skin as chemical barriers. Apigenin significantly suppressed the inflammatory and allergic responses of RAW264.7 and RBL cells, respectively, and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases. Apigenin could also be used to improve the functions of the physical and chemical skin barriers and to alleviate psoriasis, acne, and atopic dermatitis.
Collapse
Affiliation(s)
- Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Seon-Young Min
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Hye-Won Yu
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Kyungmin Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Suyeong Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Hye-Ja Lee
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Ji-Hye Kim
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
- Correspondence: ; Tel.: +82-43-840-3601
| |
Collapse
|
6
|
Holm JG, Thomsen SF. Omalizumab for atopic dermatitis: evidence for and against its use. GIORN ITAL DERMAT V 2019; 154:480-487. [PMID: 30717578 DOI: 10.23736/s0392-0488.19.06302-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Omalizumab, has been used for almost two decades, mainly in allergic asthma and chronic spontaneous urticaria for which it is highly beneficial. Smaller studies have evaluated the effects of omalizumab in atopic dermatitis (AD). Current treatments options, such as cyclosporine and azathioprine have limited effect on AD and numerous side effects. The recently introduced biologic dupilumab (anti-IL4) shows promising results, however with conjunctivitis as a prevalent side effect. We evaluate the current evidence for the use of omalizumab in AD. EVIDENCE ACQUISITION Systematic literature searches were performed in PubMed, Web of Science, Embase and Clinicaltrials.gov to identify any study (case reports, case series, and controlled trials) evaluating the effect of treatment with omalizumab in AD. EVIDENCE SYNTHESIS Thirty-four studies (12 single case studies, 15 case series, 5 prospective studies and 2 small pilot randomized placebo-controlled trials [RCTs]), including a total of 214 patients with median of 3, ranging from 1-35 patients were identified. A total of 169 patients (79.0%) experienced a beneficial effect from treatment, ranging from little to complete response, whereas 45 patients (21.0%) reported no or negative effect from omalizumab treatment. CONCLUSIONS Omalizumab is a safe and well-tolerated treatment with some clinical benefit in AD patients. However, the lack of larger RCTs and possible publication bias limit the recommendation of omalizumab for use in clinical practice for AD. Newer and more effective treatments exist and should be prioritized.
Collapse
Affiliation(s)
- Jesper G Holm
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark -
| | - Simon F Thomsen
- Department of Dermatology, Bispebjerg Hospital, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
|
8
|
Holm JG, Agner T, Sand C, Thomsen SF. Omalizumab for atopic dermatitis: case series and a systematic review of the literature. Int J Dermatol 2016; 56:18-26. [DOI: 10.1111/ijd.13353] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/02/2016] [Accepted: 03/20/2016] [Indexed: 01/01/2023]
Affiliation(s)
| | - Tove Agner
- Department of Dermatology; Bispebjerg Hospital; Copenhagen Denmark
| | - Carsten Sand
- Department of Dermatology; Bispebjerg Hospital; Copenhagen Denmark
| | - Simon Francis Thomsen
- Department of Dermatology; Bispebjerg Hospital; Copenhagen Denmark
- Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|