1
|
Alsayed A, Albadrani M, Obaid A, Alhashim A, Alakkas A. The broad spectrum of clinical manifestations observed in three patients with L2 hydroxyglutaric aciduria spans from febrile seizures to complex dystonia. Mol Genet Metab Rep 2024; 41:101135. [PMID: 39262645 PMCID: PMC11387357 DOI: 10.1016/j.ymgmr.2024.101135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
L-2 hydroxyglutaric aciduria (L-2-HGA) is a rare autosomal recessive progressive, organic aciduria which presents with a wide variety of clinical manifestations. Diagnosis is complex and necessitates an increase in clinical suspicion of the disease to obtain the necessary diagnostic tests and thus early administration of appropriate management. In this case series, we are reporting three cases of patients with L-2-HGA who presented with a variety of clinical manifestations. All patients presented with a constellation of symptoms including febrile seizures, hyperactivity and intellectual difficulties. One case had an unusual presentation of cervical dystonia in early adulthood. Another case had a homozygous variant, L2HGDH: NM_024884.3: c.368 A > G p. (Tyr123Cys) classified as variant of uncertain significance (VUS) at that time but recently has been reclassified as likely pathogenic variant in clin var. Furthermore, brain MRI of two patients depicted characteristic signs consistent with L-2-HGA. The findings include, symmetrical confluent high T2/FLAIR signal intensity of the white matter involving the subcortical U fibers and deep white matter with sparing of the immediate periventricular white matter, internal capsules and corpus callosum. There was also symmetric abnormal T2 signal intensity of the caudate nuclei, lentiform nucleus as well as the dentate nuclei of the cerebellum. Overall, only few cases with similar genetic mutation have been documented in the literature and were of Saudi origin. The aim of the study is to highlight the clinico-radiological features of L-2-HGA to aid in early, prompt diagnosis, and thus appropriate follow up and management of the disease with riboflavin, levocarnitine and a low-lysine diet.
Collapse
Affiliation(s)
- A Alsayed
- Department of Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - M Albadrani
- Department of Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - A Obaid
- Alfaisal University, College of Medicine, Riyadh, Saudi Arabia
| | - A Alhashim
- Department of Pediatric Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| | - A Alakkas
- Movement Disorders Division, Department of Neurology, National Neuroscience Institute, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Alamri A, Breitbart S, Warsi N, Rayco E, Ibrahim G, Fasano A, Gorodetsky C. Deep Brain Stimulation of the Globus Pallidus Internus in a Child with Refractory Dystonia due to L2-Hydroxyglutaric Aciduria. Stereotact Funct Neurosurg 2024; 102:209-216. [PMID: 38714179 PMCID: PMC11309047 DOI: 10.1159/000538418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/14/2024] [Indexed: 05/09/2024]
Abstract
INTRODUCTION L-2-hydroxyglutaric aciduria (L2HGA) is a rare neurometabolic disorder marked by progressive and debilitating psychomotor deficits. Here, we report the first patient with L2HGA-related refractory dystonia that was managed with deep brain stimulation to the bilateral globus pallidus internus (GPi-DBS). CASE PRESENTATION We present a 17-year-old female with progressive decline in cognitive function, motor skills, and language ability which significantly impaired activities of daily living. Neurological exam revealed generalized dystonia, significant choreic movements in the upper extremities, slurred speech, bilateral dysmetria, and a wide-based gait. Brisk deep tendon reflexes, clonus, and bilateral Babinski signs were present. Urine 2-OH-glutaric acid level was significantly elevated. Brain MRI showed extensive supratentorial subcortical white matter signal abnormalities predominantly involving the U fibers and bilateral basal ganglia. Genetic testing identified a homozygous pathogenic mutation in the L-2-hydroxyglutarate dehydrogenase gene c. 164G>A (p. Gly55Asp). Following minimal response to pharmacotherapy, GPi-DBS was performed. Significant increases in mobility and decrease in dystonia were observed at 3 weeks, 6 months, and 12 months postoperatively. CONCLUSION This is the first utilization of DBS as treatment for L2HGA-related dystonia. The resulting significant improvements indicate that pallidal neuromodulation may be a viable option for pharmaco-resistant cases, and possibly in other secondary metabolic dystonias.
Collapse
Affiliation(s)
- Abdullah Alamri
- Department of Pediatrics, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Sara Breitbart
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Nebras Warsi
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Eriberto Rayco
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - George Ibrahim
- Division of Neurosurgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Department of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson’s Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, ON, Canada
- Division of Neurology, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Carolina Gorodetsky
- Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Yang J, Chen X, Jin S, Ding J. Structure and biochemical characterization of l-2-hydroxyglutarate dehydrogenase and its role in the pathogenesis of l-2-hydroxyglutaric aciduria. J Biol Chem 2024; 300:105491. [PMID: 37995940 PMCID: PMC10726252 DOI: 10.1016/j.jbc.2023.105491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
l-2-hydroxyglutarate dehydrogenase (L2HGDH) is a mitochondrial membrane-associated metabolic enzyme, which catalyzes the oxidation of l-2-hydroxyglutarate (l-2-HG) to 2-oxoglutarate (2-OG). Mutations in human L2HGDH lead to abnormal accumulation of l-2-HG, which causes a neurometabolic disorder named l-2-hydroxyglutaric aciduria (l-2-HGA). Here, we report the crystal structures of Drosophila melanogaster L2HGDH (dmL2HGDH) in FAD-bound form and in complex with FAD and 2-OG and show that dmL2HGDH exhibits high activity and substrate specificity for l-2-HG. dmL2HGDH consists of an FAD-binding domain and a substrate-binding domain, and the active site is located at the interface of the two domains with 2-OG binding to the re-face of the isoalloxazine moiety of FAD. Mutagenesis and activity assay confirmed the functional roles of key residues involved in the substrate binding and catalytic reaction and showed that most of the mutations of dmL2HGDH equivalent to l-2-HGA-associated mutations of human L2HGDH led to complete loss of the activity. The structural and biochemical data together reveal the molecular basis for the substrate specificity and catalytic mechanism of L2HGDH and provide insights into the functional roles of human L2HGDH mutations in the pathogeneses of l-2-HGA.
Collapse
Affiliation(s)
- Jun Yang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Xingchen Chen
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shan Jin
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jianping Ding
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
4
|
Kamath SD, Bhat MD, Santhosh V, Arunachal G, Prabhuraj AR, Kulanthaivelu K, Ahmed S, Asranna A, Kenchaiah R. L-2-Hydroxyglutaric Aciduria: An Ever-Expanding Phenotypic Spectrum. Ann Indian Acad Neurol 2023; 26:603-606. [PMID: 37970304 PMCID: PMC10645249 DOI: 10.4103/aian.aian_106_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/08/2023] [Accepted: 02/19/2023] [Indexed: 11/17/2023] Open
Affiliation(s)
| | - Maya Dattatraya Bhat
- Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka, India
| | - Vani Santhosh
- Department of Neuropathology, NIMHANS, Bengaluru, Karnataka, India
| | - Gautham Arunachal
- Department of Medical Genetics, NIMHANS, Bengaluru, Karnataka, India
| | - AR Prabhuraj
- Department of Neurology, NIMHANS, Bengaluru, Karnataka, India
| | - Karthik Kulanthaivelu
- Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka, India
| | - Sabha Ahmed
- Department of Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, Karnataka, India
| | - Ajay Asranna
- Department of Neurology, NIMHANS, Bengaluru, Karnataka, India
| | | |
Collapse
|
5
|
Ponomarova O, Zhang H, Li X, Nanda S, Leland TB, Fox BW, Starbard AN, Giese GE, Schroeder FC, Yilmaz LS, Walhout AJM. A D-2-hydroxyglutarate dehydrogenase mutant reveals a critical role for ketone body metabolism in Caenorhabditis elegans development. PLoS Biol 2023; 21:e3002057. [PMID: 37043428 PMCID: PMC10096224 DOI: 10.1371/journal.pbio.3002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/28/2023] [Indexed: 04/13/2023] Open
Abstract
In humans, mutations in D-2-hydroxyglutarate (D-2HG) dehydrogenase (D2HGDH) result in D-2HG accumulation, delayed development, seizures, and ataxia. While the mechanisms of 2HG-associated diseases have been studied extensively, the endogenous metabolism of D-2HG remains unclear in any organism. Here, we find that, in Caenorhabditis elegans, D-2HG is produced in the propionate shunt, which is transcriptionally activated when flux through the canonical, vitamin B12-dependent propionate breakdown pathway is perturbed. Loss of the D2HGDH ortholog, dhgd-1, results in embryonic lethality, mitochondrial defects, and the up-regulation of ketone body metabolism genes. Viability can be rescued by RNAi of hphd-1, which encodes the enzyme that produces D-2HG or by supplementing either vitamin B12 or the ketone bodies 3-hydroxybutyrate (3HB) and acetoacetate (AA). Altogether, our findings support a model in which C. elegans relies on ketone bodies for energy when vitamin B12 levels are low and in which a loss of dhgd-1 causes lethality by limiting ketone body production.
Collapse
Affiliation(s)
- Olga Ponomarova
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Hefei Zhang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Xuhang Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Shivani Nanda
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Thomas B. Leland
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Bennett W. Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - Alyxandra N. Starbard
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Gabrielle E. Giese
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Frank C. Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, United States of America
| | - L. Safak Yilmaz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| | - Albertha J. M. Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
6
|
Ribeiro RT, Carvalho AVS, Palavro R, Durán-Carabali LE, Zemniaçak ÂB, Amaral AU, Netto CA, Wajner M. L-2-Hydroxyglutaric Acid Administration to Neonatal Rats Elicits Marked Neurochemical Alterations and Long-Term Neurobehavioral Disabilities Mediated by Oxidative Stress. Neurotox Res 2023; 41:119-140. [PMID: 36580261 DOI: 10.1007/s12640-022-00625-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
L-2-Hydroxyglutaric aciduria (L-2-HGA) is an inherited neurometabolic disorder caused by deficient activity of L-2-hydroxyglutarate dehydrogenase. L-2-Hydroxyglutaric acid (L-2-HG) accumulation in the brain and biological fluids is the biochemical hallmark of this disease. Patients present exclusively neurological symptoms and brain abnormalities, particularly in the cerebral cortex, basal ganglia, and cerebellum. Since the pathogenesis of this disorder is still poorly established, we investigated the short-lived effects of an intracerebroventricular injection of L-2-HG to neonatal rats on redox homeostasis in the cerebellum, which is mostly affected in this disorder. We also determined immunohistochemical landmarks of neuronal viability (NeuN), astrogliosis (S100B and GFAP), microglia activation (Iba1), and myelination (MBP and CNPase) in the cerebral cortex and striatum following L-2-HG administration. Finally, the neuromotor development and cognitive abilities were examined. L-2-HG elicited oxidative stress in the cerebellum 6 h after its injection, which was verified by increased reactive oxygen species production, lipid oxidative damage, and altered antioxidant defenses (decreased concentrations of reduced glutathione and increased glutathione peroxidase and superoxide dismutase activities). L-2-HG also decreased the content of NeuN, MBP, and CNPase, and increased S100B, GFAP, and Iba1 in the cerebral cortex and striatum at postnatal days 15 and 75, implying long-standing neuronal loss, demyelination, astrocyte reactivity, and increased inflammatory response, respectively. Finally, L-2-HG administration caused a delay in neuromotor development and a deficit of cognition in adult animals. Importantly, the antioxidant melatonin prevented L-2-HG-induced deleterious neurochemical, immunohistochemical, and behavioral effects, indicating that oxidative stress may be central to the pathogenesis of brain damage in L-2-HGA.
Collapse
Affiliation(s)
- Rafael Teixeira Ribeiro
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Andrey Vinícios Soares Carvalho
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Rafael Palavro
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Luz Elena Durán-Carabali
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Ângela Beatris Zemniaçak
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
| | - Alexandre Umpierrez Amaral
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Ciências Biológicas, Universidade Regional Integrada Do Alto Uruguai E das Missões, Av. Sete de Setembro, Erechim, RS, 162199709-910, Brazil
| | - Carlos Alexandre Netto
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil
| | - Moacir Wajner
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, RS, Brazil.
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, Porto Alegre, RS, 260090035-003, Brazil.
- Serviço de Genética Médica, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, Porto Alegre, RS, 235090035-007, Brazil.
| |
Collapse
|
7
|
Thamim M, Agrahari AK, Gupta P, Thirumoorthy K. Rational Computational Approaches in Drug Discovery: Potential Inhibitors for Allosteric Regulation of Mutant Isocitrate Dehydrogenase-1 Enzyme in Cancers. Molecules 2023; 28:molecules28052315. [PMID: 36903561 PMCID: PMC10005488 DOI: 10.3390/molecules28052315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 03/06/2023] Open
Abstract
Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the potential inhibitor for D-2HG formation in mutant IDH enzymes is a challenging task in cancer research. The mutation in the cytosolic IDH1 enzyme at R132H, especially, may be associated with higher frequency of all types of cancers. So, the present work specifically focuses on the design and screening of allosteric site binders to the cytosolic mutant IDH1 enzyme. The 62 reported drug molecules were screened along with biological activity to identify the small molecular inhibitors using computer-aided drug design strategies. The designed molecules proposed in this work show better binding affinity, biological activity, bioavailability, and potency toward the inhibition of D-2HG formation compare to the reported drugs in the in silico approach.
Collapse
Affiliation(s)
- Masthan Thamim
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ashish Kumar Agrahari
- Translational Health Science and Technology Institute, Faridabad 121001, Haryana, India
| | - Pawan Gupta
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Krishnan Thirumoorthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
8
|
Gunduz A, Aktuglu-Zeybek AC, Tezer D, Enver EO, Zubarioglu T, Kiykim E, E Kiziltan M. Postural tremor in L-2-hydroxyglutaric aciduria is associated with cerebellar atrophy. Neurol Sci 2021; 43:2051-2058. [PMID: 34427791 DOI: 10.1007/s10072-021-05555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 07/31/2021] [Indexed: 12/01/2022]
Abstract
OBJECTIVE In this study, we performed analysis of brainstem reflexes and movement disorders using surface polymyogram in L-2-hydroxyglutaric aciduria (L2HGA). We also reviewed all cases in the literature with detailed clinical and radiological description to analyze the anatomical correlates of involuntary movements. PATIENTS AND METHOD We performed surface electromyography of appropriate muscles, long-loop reflexes, and somatosensory evoked potentials and analyzed the neuroimaging findings in patients with L2HGA and recorded blink reflex (BR), auditory startle response (ASR), and startle response after somatosensory stimuli (SSS) in patients and healthy subjects. We also performed a systematic literature search to identify the association of neuroimaging findings and movements disorders in previous patients with L2HGA. RESULTS Thirteen patients were enrolled in the study. Among them, ten had low-amplitude postural tremor with a frequency between 4 and 7 Hz. The tremor was predominant on distal parts of the upper extremities. Postural tremor was accompanied by negative myoclonus in one-third. The BR, ASR, and SSS, all, were hypoactive. There was a close association of postural tremor with cerebellar atrophy in patients who participated in this study and by the analysis of the previously reported patients. CONCLUSIONS Low-amplitude postural tremor is common in L2HGA. It is related with cerebellar atrophy. Although the neuroimaging shows no overt lesions at the brainstem, there is a functional inhibition at this level.
Collapse
Affiliation(s)
- Aysegul Gunduz
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ayse Cigdem Aktuglu-Zeybek
- Department of Pediatrics Division of Nutrition and Metabolism, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Damla Tezer
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ece Oge Enver
- Department of Pediatrics Division of Nutrition and Metabolism, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Tanyel Zubarioglu
- Department of Pediatrics Division of Nutrition and Metabolism, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ertugrul Kiykim
- Department of Pediatrics Division of Nutrition and Metabolism, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Meral E Kiziltan
- Department of Neurology, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
9
|
Evaluation of clinical, neuroradiologic, and genotypic features of patients with L-2-hydroxyglutaric aciduria. Turk Arch Pediatr 2020; 55:290-298. [PMID: 33061758 PMCID: PMC7536460 DOI: 10.14744/turkpediatriars.2019.06926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/09/2019] [Indexed: 12/04/2022]
Abstract
Aim: L-2-hydroxyglutaric aciduria is a slowly progressive neurometabolic disorder caused by an enzymatic deficiency of L-2-hydroxyglutarate dehydrogenase. Here, we aimed to evaluate the clinical, neuroradiologic, and genotypic characteristics of patients with L-2-hydroxyglutaric aciduria who were followed in our outpatient clinic. Material and Methods: Twenty-five patients with L-2-hydroxyglutaric aciduria were enrolled in the study. Data regarding demographic, clinical, and neuroradiologic findings and molecular analysis were evaluated retrospectively. Results: The mean age of patients at the time of diagnosis was 12.09±8.02 years, whereas the mean age at the time of the first symptoms was 39.47±29.96 months. Diagnostic delay was found as 9.95±7.78 years. Developmental delay, decrease in school success, and seizures were the most common initial symptoms; however, behavioral problems and seizures became more prominent in the disease course. At the time of diagnosis, mental retardation and at least one pathologic cerebellar finding were detected in all symptomatic patients. Three patients developed brain tumors. The most common neuroimaging findings were subcortical white matter changes and cerebellar dentate nucleus involvement. In one patient, there was only isolated basal ganglia involvement without white matter lesions. Patients with similar genotypic features exhibited different clinical and radiologic findings. Conclusion: Although clinical symptoms appear early in L-2-hydroxyglutaric aciduria, there is approximately a ten-year delay in diagnosis. In subjects in whom brain tumor is detected in early childhood, L-2-hydroxyglutaric aciduria should be considered in the differential diagnosis in the presence of mental retardation accompanied by developmental delay, cerebellar and pyramidal findings, and behavior disorders in a wide spectrum ranging from autism spectrum disorder to psychosis. In patients with L-2-hydroxyglutaric aciduria, incipient headache, tinnitus, altered consciousness, and seizures can be indicative of brain tumors.
Collapse
|
10
|
Abstract
L-2-hydroxyglutaric aciduria (L2HGA), which is a rare autosomal recessive metabolic disorder caused by mutations in the encoding L2HGDH gene. Neurological symptoms are the main predominant clinical signs. The distinctive feature is the specific multifocal lesion of the white matter detected on magnetic resonance imaging (MRI). A 7-year-old male patient of Turkish origin was admitted to the hospital because of hand tremors. Physical examination revealed macrocephaly, intention tremors, walking disability and ataxic gait. Urine organic acid analysis showed increased excretion of L-2-hydroxyglutaric acid (L2HG acid). Analysis of the L2HGDH gene revealed a novel homozygous c.368A>G, p. (Tyr123Cys) mutation. L-2-hydroxyglutaric aciduria is a cerebral organic aciduria that may lead to various neurological complications. Early recognition of symptoms of L2HGA is important for initiation of supportive therapy that may slow down the progression of the disease.
Collapse
|
11
|
Bahar S, Zübarioğlu T, Cansever MŞ, Yalçınkaya C. Ependimom ve L-2-hidroksiglutarik asidüri: İki kardeş olgu sunumu. EGE TIP DERGISI 2019. [DOI: 10.19161/etd.665861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
Tan AP, Mankad K, Gonçalves FG, Talenti G, Alexia E. Macrocephaly: Solving the Diagnostic Dilemma. Top Magn Reson Imaging 2018; 27:197-217. [PMID: 30086108 DOI: 10.1097/rmr.0000000000000170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Macrocephaly is a relatively common clinical condition affecting up to 5% of the pediatric population. It is defined as an abnormally large head with an occipitofrontal circumference greater than 2 standard deviations above the mean for a given age and sex. Megalencephaly refers exclusively to brain overgrowth exceeding twice the standard deviation. Macrocephaly can be isolated and benign or may be the first indication of an underlying congenital, genetic, or acquired disorder, whereas megalencephaly is more often syndromic. Megalencephaly can be divided into 2 subtypes: metabolic and developmental, caused by genetic defects in cellular metabolism and alterations in signaling pathways, respectively. Neuroimaging plays an important role in the evaluation of macrocephaly, especially in the metabolic subtype which may not be overtly apparent clinically. This article outlines the diverse etiologies of macrocephaly, delineates their clinical and radiographic features, and suggests a clinicoradiological algorithm for evaluation.
Collapse
Affiliation(s)
- Ai Peng Tan
- Department of Diagnostic Radiology, National University Health System, Singapore, Singapore
| | - Kshitij Mankad
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | | | - Giacomo Talenti
- Neuroradiology Unit, Padua University Hospital, Padua, Italy
| | - Egloff Alexia
- Perinatal Imaging and Health Department, St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
13
|
Zhang Y, Wang C, Yang K, Wang S, Tian G, Chen Y. A novel compound heterozygous mutation of the L2HGDH gene in a Chinese boy with L-2-hydroxyglutaric aciduria: case report and literature review. Neurol Sci 2018; 39:1697-1703. [PMID: 29980873 DOI: 10.1007/s10072-018-3483-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 06/28/2018] [Indexed: 11/25/2022]
Abstract
OBJECTIVE L-2-hydroxyglutaric aciduria is a genetic metabolic disorder. Its clinical features include elevated levels of hydroxyglutaric acid in body fluids and abnormal magnetic resonance imaging (MRI) in the subcortical white matter, which are affected by the accumulation of L-2-hydroxyglutaric acid. METHOD A boy with psychomotor retardation and progressive ataxia accompanied by abnormal brain MRI findings was tested using whole-exome sequencing. RESULTS Next-generation sequencing (NGS) revealed two novel compound heterozygous frameshift mutations, c.407 del A (p.K136SfsTer3) and c.699_c700 ins A (p.D234RfsTer42), in the L-2-hydroxyglutarate dehydrogenase (L2HGDH) gene, leading to premature termination codons and truncated FAD/NAD(P)-binding domain of L2HGDH protein. Further laboratory testing revealed an increase in the 2-hydroxyglutaric acid level in the urine. CONCLUSION The results suggested that NGS could provide clues for identifying patients with abnormal neuroradiological findings in the subcortical white matter.
Collapse
Affiliation(s)
- Yuanfeng Zhang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Lu Ding Lu, Putuo Qu, Shanghai, 200062, China
| | - Chunmei Wang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Lu Ding Lu, Putuo Qu, Shanghai, 200062, China
| | - Kunfang Yang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Lu Ding Lu, Putuo Qu, Shanghai, 200062, China
| | - Simei Wang
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Lu Ding Lu, Putuo Qu, Shanghai, 200062, China
| | - Guoli Tian
- Neonatal Screening Center, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shi, Shanghai, 200000, China
| | - Yucai Chen
- Department of Neurology, Shanghai Children's Hospital, Shanghai Jiao Tong University, 355 Lu Ding Lu, Putuo Qu, Shanghai, 200062, China.
| |
Collapse
|
14
|
Ullah MI, Nasir A, Ahmad A, Harlalka GV, Ahmad W, Hassan MJ, Baple EL, Crosby AH, Chioza BA. Identification of novel L2HGDH mutation in a large consanguineous Pakistani family- a case report. BMC MEDICAL GENETICS 2018; 19:25. [PMID: 29458334 PMCID: PMC5819255 DOI: 10.1186/s12881-018-0532-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/24/2018] [Indexed: 11/27/2022]
Abstract
Background L-2-hydroxyglutaric aciduria (L2HGA) is a progressive neurometabolic disease of brain caused by mutations of in L-2-hydroxyglutarate dehydrogenase (L2HGDH) gene. Cardinal clinical features include cerebellar ataxia, epilepsy, neurodevelopmental delay, intellectual disability, and other clinical neurological deficits. Case presentation We describe an index case of the family presented with generalised tonic-clonic seizure, developmental delay, intellectual disability, and ataxia. Initially, the differential diagnosis was difficult to be established and a SNP genome wide scan identified the candidate region on chromosome 14q22.1. DNA sequencing showed a novel homozygous mutation in the candidate gene L2HGDH (NM_024884.2: c.178G > A; p.Gly60Arg). The mutation p.Gly60Arg lies in the highly conserved FAD/NAD(P)-binding domain of this mitochondrial enzyme, predicted to disturb enzymatic function. Conclusions The combination of homozygosity mapping and DNA sequencing identified a novel mutation in Pakistani family with variable clinical features. This is second report of a mutation in L2HGDH gene from Pakistan and the largest family with L2HGA reported to date.
Collapse
Affiliation(s)
- Muhammad Ikram Ullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - Abdul Nasir
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.,Computational Medicinal Chemistry Laboratory, Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Arsalan Ahmad
- Division of Neurology, Shifa International Hospital, Shifa Tameer e Millat University, Islamabad, Pakistan
| | - Gaurav Vijay Harlalka
- RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Jawad Hassan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences & Technology (NUST), Islamabad, Pakistan
| | - Emma L Baple
- RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK
| | - Barry A Chioza
- RILD Wellcome Wolfson Centre - Level 4, Royal Devon and Exeter NHS Foundation Trust, University of Exeter Medical School, Barrack Road, Exeter, EX2 5DW, UK.
| |
Collapse
|
15
|
Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, Debatin KM, Deubzer H, Dirksen U, Eckert C, Eggert A, Erlacher M, Fleischhack G, Frühwald MC, Gnekow A, Goehring G, Graf N, Hanenberg H, Hauer J, Hero B, Hettmer S, von Hoff K, Horstmann M, Hoyer J, Illig T, Kaatsch P, Kappler R, Kerl K, Klingebiel T, Kontny U, Kordes U, Körholz D, Koscielniak E, Kramm CM, Kuhlen M, Kulozik AE, Lamottke B, Leuschner I, Lohmann DR, Meinhardt A, Metzler M, Meyer LH, Moser O, Nathrath M, Niemeyer CM, Nustede R, Pajtler KW, Paret C, Rasche M, Reinhardt D, Rieß O, Russo A, Rutkowski S, Schlegelberger B, Schneider D, Schneppenheim R, Schrappe M, Schroeder C, von Schweinitz D, Simon T, Sparber-Sauer M, Spix C, Stanulla M, Steinemann D, Strahm B, Temming P, Thomay K, von Bueren AO, Vorwerk P, Witt O, Wlodarski M, Wössmann W, Zenker M, Zimmermann S, Pfister SM, Kratz CP. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 2017; 173:1017-1037. [PMID: 28168833 DOI: 10.1002/ajmg.a.38142] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.
Collapse
Affiliation(s)
- Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stefan S Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Arndt Borkhardt
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Ines B Brecht
- General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Gabriele Calaminus
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hedwig Deubzer
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Uta Dirksen
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Michael C Frühwald
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Astrid Gnekow
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Gudrun Goehring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Helmut Hanenberg
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany.,Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Hauer
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Barbara Hero
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Simone Hettmer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Horstmann
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hoyer
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kornelius Kerl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Thomas Klingebiel
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Körholz
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Ewa Koscielniak
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Michaela Kuhlen
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Britta Lamottke
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University of Kiel, Kiel, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Andrea Meinhardt
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Olga Moser
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Michaela Nathrath
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany.,Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich, Neuherberg, Germany.,Pediatric Oncology Center, Technical University Munich, Munich, Germany
| | - Charlotte M Niemeyer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Nustede
- Department of Surgery, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Kristian W Pajtler
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Mareike Rasche
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Dirk Reinhardt
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Thorsten Simon
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Monika Sparber-Sauer
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Claudia Spix
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Brigitte Strahm
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Petra Temming
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre O von Bueren
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Peter Vorwerk
- Pediatric Oncology, Otto von Guericke University Children's Hospital, Magdeburg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcin Wlodarski
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Willy Wössmann
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Zimmermann
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Stefan M Pfister
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|