1
|
Monocentric evaluation of Ki-67 labeling index in combination with a modified RPA score as a prognostic factor for survival in IDH-wildtype glioblastoma patients treated with radiochemotherapy. Strahlenther Onkol 2022; 198:892-906. [PMID: 35612598 PMCID: PMC9515058 DOI: 10.1007/s00066-022-01959-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/24/2022] [Indexed: 11/05/2022]
Abstract
Purpose The prognosis for glioblastoma patients remains dismal despite intensive research on better treatment options. Molecular and immunohistochemical markers are increasingly being investigated as understanding of their role in disease progression grows. O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation has been shown to have prognostic and therapeutic relevance for glioblastoma patients. Other markers implicated in tumor formation and/or malignancy are p53, Alpha thalassemia/mental retardation syndrome X-linked (ATRX), Epidermal Growth Factor Receptor splice variant III (EGFRvIII), and Ki-67, with loss of nuclear ATRX expression and lower Ki-67 index being associated with prolonged survival. For p53 and EGFRvIII the data are contradictory. Our aim was to investigate the markers mentioned above regarding progression-free (PFS) and overall survival (OS) to evaluate their viability as independent prognostic markers for our patient collective. Methods In this retrospective study, we collected data on patients undergoing radiotherapy due to isocitrate dehydrogenase (IDH) wildtype glioblastoma at a single university hospital between 2014 and 2020. Results Our findings confirm Ki-67 labeling index ≤ 20% as an independent prognostic factor for prolonged PFS as well as MGMT promoter methylation for both prolonged PFS and OS, in consideration of age and Eastern Cooperative Oncology Group (ECOG) status, chemotherapy treatment, and total radiation dose for PFS as well as additionally sex, resection status, and receipt of treatment for progression or recurrence for OS. Additionally, Ki-67 labeling index ≤ 20% showed a significant correlation with prolonged OS in univariate analysis. Modification of the recursive partitioning analysis (RPA) score to include Ki-67 labeling index resulted in a classification with the possible ability to distinguish long-term-survivors from patients with unfavorable prognosis. Conclusion MGMT promoter methylation and Ki-67 labeling index were independent predictors of survival in our collective. We see further studies pooling patient collectives to reach larger patient numbers concerning Ki-67 labeling index as being warranted. Supplementary Information The online version of this article (10.1007/s00066-022-01959-6) contains supplementary material, which is available to authorized users.
Collapse
|
2
|
Tierling S, Jürgens-Wemheuer WM, Leismann A, Becker-Kettern J, Scherer M, Wrede A, Breuskin D, Urbschat S, Sippl C, Oertel J, Schulz-Schaeffer WJ, Walter J. Bisulfite profiling of the MGMT promoter and comparison with routine testing in glioblastoma diagnostics. Clin Epigenetics 2022; 14:26. [PMID: 35180887 PMCID: PMC8857788 DOI: 10.1186/s13148-022-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Promoter methylation of the DNA repair gene O6-methylguanine-DNA methyltransferase (MGMT) is an acknowledged predictive epigenetic marker in glioblastoma multiforme and anaplastic astrocytoma. Patients with methylated CpGs in the MGMT promoter benefit from treatment with alkylating agents, such as temozolomide, and show an improved overall survival and progression-free interval. A precise determination of MGMT promoter methylation is of importance for diagnostic decisions. We experienced that different methods show partially divergent results in a daily routine. For an integrated neuropathological diagnosis of malignant gliomas, we therefore currently apply a combination of methylation-specific PCR assays and pyrosequencing. Results To better rationalize the variation across assays, we compared these standard techniques and assays to deep bisulfite sequencing results in a cohort of 80 malignant astrocytomas. Our deep analysis covers 49 CpG sites of the expanded MGMT promoter, including exon 1, parts of intron 1 and a region upstream of the transcription start site (TSS). We observed that deep sequencing data are in general in agreement with CpG-specific pyrosequencing, while the most widely used MSP assays published by Esteller et al. (N Engl J Med 343(19):1350–1354, 2000. 10.1056/NEJM200011093431901) and Felsberg et al. (Clin Cancer Res 15(21):6683–6693, 2009. 10.1158/1078-0432.CCR-08-2801) resulted in partially discordant results in 22 tumors (27.5%). Local deep bisulfite sequencing (LDBS) revealed that CpGs located in exon 1 are suited best to discriminate methylated from unmethylated samples. Based on LDBS data, we propose an optimized MSP primer pair with 83% and 85% concordance to pyrosequencing and LDBS data. A hitherto neglected region upstream of the TSS, with an overall higher methylation compared to exon 1 and intron 1 of MGMT, is also able to discriminate the methylation status. Conclusion Our integrated analysis allows to evaluate and redefine co-methylation domains within the MGMT promoter and to rationalize the practical impact on assays used in daily routine diagnostics. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01244-4.
Collapse
Affiliation(s)
- Sascha Tierling
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.
| | | | - Alea Leismann
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| | - Julia Becker-Kettern
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - Michael Scherer
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany.,Department of Bioinformatics and Genomics, Centre for Genomic Regulation, Barcelona, Spain
| | - Arne Wrede
- Institute of Neuropathology, Medical Faculty of the Saarland University, Homburg, Germany
| | - David Breuskin
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Steffi Urbschat
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Christoph Sippl
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | - Joachim Oertel
- Institute for Neurosurgery, Medical Faculty of the Saarland University, Homburg, Germany
| | | | - Jörn Walter
- Fak.NT Life Sciences, Department of Genetics/Epigenetics, Saarland University, Campus, Building A2 4, 66041, Saarbrücken, Germany
| |
Collapse
|
3
|
Kurdi M, Shafique Butt N, Baeesa S, Alghamdi B, Maghrabi Y, Bardeesi A, Saeedi R, Al-Sinani T, Alghanmi N, Bari MO, Samkari A, Lary AI. The Impact of IDH1 Mutation and MGMT Promoter Methylation on Recurrence-Free Interval in Glioblastoma Patients Treated With Radiotherapy and Chemotherapeutic Agents. Pathol Oncol Res 2021; 27:1609778. [PMID: 34257620 PMCID: PMC8262235 DOI: 10.3389/pore.2021.1609778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
The aim of this study is to investigate the relationship between isocitrate dehydrogenase-1 (IDH1) mutation and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation with recurrence-free interval in glioblastoma patients treated with chemoradiotherapies. Clinical data were collected from 82 patients with totally resected glioblastoma and treated with adjuvant therapies from 2014 to 2019. IDH1 mutation was assessed by immunohistochemistry and MGMT promoter methylation was assessed by different sequencing methods. IDH1 mutation was present in 32 cases and 50 cases were IDH1 wildtype; 54 and 28 patients had unmethylated and methylated MGMT promoter, respectively, Of the 82 patients, 62 patients received chemoradiotherapy while 20 patients only received radiation. Approximately, 61% of patients had a tumor recurrence after 1 year, and 39% showed a recurrence before 1 year of treatment. There was no significant relationship between IDH1 mutation and MGMT promoter methylation (p-value = 0.972). Patients with IDH1 mutation and their age <50 years showed a significant difference in recurrence-free interval (p-value = 0.014). Difference in recurrence-free interval was also statistically observed in patients with unmethylated MGMT promoter and treated with chemoradiotherapies (p-value = 0.031), by which they showed a late tumor recurrence (p-value = 0.016). This revealed that IDH1 mutation and MGMT methylation are independent prognostic factors in glioblastoma. Although IDH1-mutant glioblastomas showed late tumor recurrence in patients less than 50 years old, the type of treatment modalities may not show additional beneficial outcome. Patients with unmethylated MGMT and IDH1 mutation, treated with different chemoradiotherapies, showed a late tumor recurrence.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadeem Shafique Butt
- Department of Family and Community Medicine, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Badrah Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Yazid Maghrabi
- Department of Neuroscience, King Faisal Specialist Hospital, Jeddah, Saudi Arabia
| | - Anas Bardeesi
- Department of Neuroscience, King Faisal Specialist Hospital, Jeddah, Saudi Arabia
| | - Rothaina Saeedi
- Division of Neurosurgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Taghreed Al-Sinani
- Department of Surgery,Division of Neurosurgery, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Najla Alghanmi
- Department of Pathology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed O Bari
- Department of Pathology, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Alaa Samkari
- Department of Pathology and Laboratory Medicine, King Saud Bin Abdulaziz University for Health Science, Jeddah, Saudi Arabia
| | - Ahmed I Lary
- Section of Neurosurgery, Department of Surgery, King Abdulaziz Medical City, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Taher MM, Dairi G, Butt EM, Al-Quthami K, Al-Khalidi H, Jastania RA, Nageeti TH, Bogari NM, Athar M, Al-Allaf FA, Valerie K. EGFRvIII expression and isocitrate dehydrogenase mutations in patients with glioma. Oncol Lett 2020; 20:384. [PMID: 33193845 PMCID: PMC7656109 DOI: 10.3892/ol.2020.12247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Molecular pathology and personalized medicine are still being evolved in Saudi Arabia, and genetic testing for the detection of mutations as cancer markers have not been established in the diagnostics laboratories in Saudi Arabia. The aim of the present study was to determine the prevalence of isocitrate dehydrogenase (IDH1 and IDH2) mutations and epidermal growth factor receptor variant (EGFRv)III transcript expression in Saudi Arabian patients with glioma. Out of 117 brain tumors tested by reverse transcription-quantitative PCR for EGFRvIII, 41 cases tested positive. In the glioblastoma (GBM) category, 28/55 tumors were positive, in astrocytoma tumors 5/22, and in oligodendrogliomas 4/13 cases were positive respectively. EGFRvIII transcript was sequenced by capillary electrophoresis to demonstrate the presence of EGFRvIII-specific junction where exons 2–7 were deleted. In the present study 106 tumors were sequenced for IDH1 exon-4 mutations using the capillary sequencing method. The most common substitution missense mutation c.395G>A was found in 16 tumors. In the case of adamantinomatous craniopharyngioma, a novel missense mutation in c.472C>T was detected in IDH2 gene. Using next-generation sequencing (NGS), 74 tumors were sequenced for the IDH1 gene, and a total of 8 missense variants were identified in 36 tumors in a population of Saudi Arabia. The missense mutation (c.395G>A) was detected in 29/36 of tumors. A novel intronic mutation in c.414+9T>A was found in 13 cases in the IDH1 gene. In addition, one case exhibited a novel synonymous mutation in c.369A>G. Eleven tumors were found to have compound mutations in the IDH1 gene. In IDH2 gene, out of a total of 16 variants found in 6 out of 45 tumors, nine were missense, five were synonymous and one was intronic. This is the first report from Saudi Arabian laboratories analyzing glioma tumors for EGFRvIII expression, and the first study from Saudi Arabia to analyze IDH mutations in gliomas using the capillary and NGS methods.
Collapse
Affiliation(s)
- Mohiuddin M Taher
- Medical Genetics Department, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 24381, Saudi Arabia
| | - Ghida Dairi
- Medicine and Medical Sciences Research, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Department of Physiology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Ejaz Muhammad Butt
- Department of Laboratory Medicine and Histopathology Division, Al-Noor Specialty Hospital, Makkah 24242, Saudi Arabia
| | - Khalid Al-Quthami
- Department of Laboratory Medicine and Histopathology Division, Al-Noor Specialty Hospital, Makkah 24242, Saudi Arabia
| | - Hisham Al-Khalidi
- Department of Pathology, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Raid A Jastania
- Department of Pathology, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Department of Pathology, College of Medicine, King Abdul Aziz Medical City, Jeddah 21423, Saudi Arabia
| | - Tahani H Nageeti
- Radiation Oncology Department, King Abdullah Medical City, Makkah 24246, Saudi Arabia
| | - Neda M Bogari
- Medical Genetics Department, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia
| | - Mohammad Athar
- Medical Genetics Department, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 24381, Saudi Arabia
| | - Faisal A Al-Allaf
- Medical Genetics Department, College of Medicine, Umm-Al-Qura University, Makkah 24381, Saudi Arabia.,Science and Technology Unit, Umm-Al-Qura University, Makkah 24381, Saudi Arabia
| | - Kristoffer Valerie
- Department of Radiation Oncology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|