1
|
Zamanian M, Treglia G, Abedi I. Diagnostic Accuracy of PET with Different Radiotracers versus Bone Scintigraphy for Detecting Bone Metastases of Breast Cancer: A Systematic Review and a Meta-Analysis. J Imaging 2023; 9:274. [PMID: 38132692 PMCID: PMC10744045 DOI: 10.3390/jimaging9120274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023] Open
Abstract
Due to the importance of correct and timely diagnosis of bone metastases in advanced breast cancer (BrC), we performed a meta-analysis evaluating the diagnostic accuracy of [18F]FDG, or Na[18F]F PET, PET(/CT), and (/MRI) versus [99mTc]Tc-diphosphonates bone scintigraphy (BS). The PubMed, Embase, Scopus, and Scholar electronic databases were searched. The results of the selected studies were analyzed using pooled sensitivity and specificity, diagnostic odds ratio (DOR), positive-negative likelihood ratio (LR+-LR-), and summary receiver-operating characteristic (SROC) curves. Eleven studies including 753 BrC patients were included in the meta-analysis. The patient-based pooled values of sensitivity, specificity, and area under the SROC curve (AUC) for BS (with 95% confidence interval values) were 90% (86-93), 91% (87-94), and 0.93, respectively. These indices for [18F]FDG PET(/CT) were 92% (88-95), 99% (96-100), and 0.99, respectively, and for Na[18F]F PET(/CT) were 96% (90-99), 81% (72-88), and 0.99, respectively. BS has good diagnostic performance in detecting BrC bone metastases. However, due to the higher and balanced sensitivity and specificity of [18F]FDG PET(/CT) compared to BS and Na[18F]F PET(/CT), and its advantage in evaluating extra-skeletal lesions, [18F]FDG PET(/CT) should be the preferred multimodal imaging method for evaluating bone metastases of BrC, if available.
Collapse
Affiliation(s)
- Maryam Zamanian
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.Z.); (I.A.)
| | - Giorgio Treglia
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Imaging Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Iraj Abedi
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran; (M.Z.); (I.A.)
| |
Collapse
|
2
|
Morawitz J, Bruckmann NM, Jannusch K, Dietzel F, Milosevic A, Bittner AK, Hoffmann O, Mohrmann S, Ruckhäberle E, Häberle L, Fendler WP, Herrmann K, Giesel FL, Antoch G, Umutlu L, Kowall B, Stang A, Kirchner J. Conventional Imaging, MRI and 18F-FDG PET/MRI for N and M Staging in Patients with Newly Diagnosed Breast Cancer. Cancers (Basel) 2023; 15:3646. [PMID: 37509307 PMCID: PMC10377867 DOI: 10.3390/cancers15143646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Background: This study compares the diagnostic potential of conventional staging (computed tomography (CT), axillary sonography and bone scintigraphy), whole-body magnetic resonance imaging (MRI) and whole-body 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET/)MRI for N and M staging in newly diagnosed breast cancer. Methods: A total of 208 patients with newly diagnosed breast cancer were prospectively included in this study and underwent contrast-enhanced thoracoabdominal CT, bone scintigraphy and axillary sonography as well as contrast-enhanced whole-body 18F-FDG PET/MRI. The datasets were analyzed with respect to lesion localization and characterization. Histopathology and follow-up imaging served as the reference standard. A McNemar test was used to compare the diagnostic performance of conventional staging, MRI and 18F-FDG PET/MRI and a Wilcoxon test was used to compare differences in true positive findings for nodal staging. Results: Conventional staging determined the N stage with a sensitivity of 80.9%, a specificity of 99.2%, a PPV (positive predictive value) of 98.6% and a NPV (negative predictive value) of 87.4%. The corresponding results for MRI were 79.6%, 100%, 100% and 87.0%, and were 86.5%, 94.1%, 91.7% and 90.3% for 18F-FDG PET/MRI. 18F-FDG PET/MRI was significantly more sensitive in determining malignant lymph nodes than conventional imaging and MRI (p < 0.0001 and p = 0.0005). Furthermore, 18F-FDG PET/MRI accurately estimated the clinical lymph node stage in significantly more cases than conventional imaging and MRI (each p < 0.05). Sensitivity, specificity, PPV and NPV for the M stage in conventional staging were 83.3%, 98.5%, 76.9% and 98.9%, respectively. The corresponding results for both MRI and 18F-FDG PET/MRI were 100.0%, 98.5%, 80.0% and 100.0%. No significant differences between the imaging modalities were seen for the staging of distant metastases. Conclusions:18F-FDG PET/MRI detects lymph node metastases in significantly more patients and estimates clinical lymph node stage more accurately than conventional imaging and MRI. No significant differences were found between imaging modalities with respect to the detection of distant metastases.
Collapse
Affiliation(s)
- Janna Morawitz
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Nils-Martin Bruckmann
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Kai Jannusch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Frederic Dietzel
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Aleksandar Milosevic
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Ann-Kathrin Bittner
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Oliver Hoffmann
- Department Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Svjetlana Mohrmann
- Department of Gynecology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Eugen Ruckhäberle
- Department of Gynecology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Lena Häberle
- Institute of Pathology, Medical Faculty, University Hospital Duesseldorf, Heinrich-Heine-University, D-40204 Duesseldorf, Germany
| | - Wolfgang Peter Fendler
- Department of Nuclear Medicine, German Cancer Consortium (DKTK)-University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, German Cancer Consortium (DKTK)-University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Frederik Lars Giesel
- Department of Nuclear Medicine, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Bernd Kowall
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, D-45147 Essen, Germany
| | - Andreas Stang
- Institute of Medical Informatics, Biometry and Epidemiology, University Hospital of Essen, D-45147 Essen, Germany
| | - Julian Kirchner
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, D-40225 Dusseldorf, Germany
| |
Collapse
|
3
|
de Mooij CM, Sunen I, Mitea C, Lalji UC, Vanwetswinkel S, Smidt ML, van Nijnatten TJ. Diagnostic performance of PET/computed tomography versus PET/MRI and diffusion-weighted imaging in the N- and M-staging of breast cancer patients. Nucl Med Commun 2020; 41:995-1004. [PMID: 32769814 PMCID: PMC7497599 DOI: 10.1097/mnm.0000000000001254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To provide a systematic review regarding the diagnostic performance of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI) and diffusion-weighted imaging (DWI) compared to 18F-FDG PET/computed tomography (CT) focused on nodal and distant staging in breast cancer patients. METHODS The PubMed and Embase databases were searched for relevant publications until April 2020. Two independent reviewers searched for eligible articles based on predefined in- and exclusion criteria, assessed quality and extracted data. RESULTS Eleven eligible studies were selected from 561 publications identified by the search. In seven studies, PET/CT was compared with PET/MRI, and in five, PET/CT with DWI. Significantly higher sensitivity for PET/MRI compared to PET/CT in a lesion-based analysis was reported for all lesions together (77% versus 89%) in one study, osseous metastases (69-99% versus 92-98%) in two studies and hepatic metastases (70-75% versus 80-100%) in one study. Moreover, PET/MRI revealed a significantly higher amount of osseous metastases (90 versus 141) than PET/CT. PET/CT is associated with a statistically higher specificity than PET/MRI in the lesion detection of all lesions together (98% versus 96%) and of osseous metastases (100% versus 95%), both in one study. None of the reviewed studies reported significant differences between PET/CT and DWI for any of the evaluated sites. There is a trend toward higher specificity for PET/CT. CONCLUSION In general, there is a trend toward higher sensitivity and lower specificity of PET/MRI when compared to PET/CT. Results on the diagnostic performance of DWI are conflicting. Rather than evaluating it separate, it seems to have complementary value when combined with other MR sequences.
Collapse
Affiliation(s)
- Cornelis Maarten de Mooij
- Departments of Radiology and Nuclear Medicine
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Inés Sunen
- Departments of Radiology and Nuclear Medicine
- Department of Radiology, Miguel Servet Hospital, Zaragoza, Spain
| | - Cristina Mitea
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | | | - Marjolein L. Smidt
- Surgery
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Thiemo J.A. van Nijnatten
- Departments of Radiology and Nuclear Medicine
- GROW – School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|