1
|
Payette K, Uus AU, Aviles Verdera J, Hall M, Egloff A, Deprez M, Tomi-Tricot R, Hajnal JV, Rutherford MA, Story L, Hutter J. Fetal body organ T2* relaxometry at low field strength (FOREST). Med Image Anal 2024; 99:103352. [PMID: 39326224 DOI: 10.1016/j.media.2024.103352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Fetal Magnetic Resonance Imaging (MRI) at low field strengths is an exciting new field in both clinical and research settings. Clinical low field (0.55T) scanners are beneficial for fetal imaging due to their reduced susceptibility-induced artifacts, increased T2* values, and wider bore (widening access for the increasingly obese pregnant population). However, the lack of standard automated image processing tools such as segmentation and reconstruction hampers wider clinical use. In this study, we present the Fetal body Organ T2* RElaxometry at low field STrength (FOREST) pipeline that analyzes ten major fetal body organs. Dynamic multi-echo multi-gradient sequences were acquired and automatically reoriented to a standard plane, reconstructed into a high-resolution volume using deformable slice-to-volume reconstruction, and then automatically segmented into ten major fetal organs. We extensively validated FOREST using an inter-rater quality analysis. We then present fetal T2* body organ growth curves made from 100 control subjects from a wide gestational age range (17-40 gestational weeks) in order to investigate the relationship of T2* with gestational age. The T2* values for all organs except the stomach and spleen were found to have a relationship with gestational age (p<0.05). FOREST is robust to fetal motion, and can be used for both normal and fetuses with pathologies. Low field fetal MRI can be used to perform advanced MRI analysis, and is a viable option for clinical scanning.
Collapse
Affiliation(s)
- Kelly Payette
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK.
| | - Alena U Uus
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Jordina Aviles Verdera
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Megan Hall
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Women & Children's Health, King's College London, London, UK
| | - Alexia Egloff
- Department of Women & Children's Health, King's College London, London, UK
| | - Maria Deprez
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | | | - Joseph V Hajnal
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Mary A Rutherford
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Lisa Story
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Women & Children's Health, King's College London, London, UK
| | - Jana Hutter
- Research Department of Early Life Imaging, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; Smart Imaging Lab, Radiological Institute, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
2
|
Moradi B, Golezar MH, Mortazavi Ardestani R, Hassanzadeh S, Jannatdoust P, Banihashemian M, Batavani N. Ultrasound and magnetic resonance imaging features of fetal urogenital anomalies: A pictorial essay. Congenit Anom (Kyoto) 2024; 64:70-90. [PMID: 38586935 DOI: 10.1111/cga.12568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024]
Abstract
This pictorial essay focuses on ultrasound (US) and magnetic resonance imaging (MRI) features of fetal urogenital anomalies. Fetal urogenital malformations account for 30%-50% of all anomalies discovered during pregnancy or at birth. They are usually detected by fetal ultrasound exams. However, when ultrasound data on their characteristics is insufficient, MRI is the best option for detecting other associated anomalies. The prognosis highly depends on their type and whether they are associated with other fetal abnormalities.
Collapse
Affiliation(s)
- Behnaz Moradi
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- Department of Radiology, Yas Complex Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Golezar
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Faculty of Medicine, Shahed University, Tehran, Iran
| | | | - Sara Hassanzadeh
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA
| | - Payam Jannatdoust
- Advanced Diagnostic and Interventional Radiology Research Center (ADIR), Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Banihashemian
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Batavani
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Özdemir H, Özdemir BG, Kavak SY, Şık Ş. A new sonographic marker in the diagnosis of prenatal bilateral renal agenesis, segmental anterior deviation of the aorta. CASE REPORTS IN PERINATAL MEDICINE 2022. [DOI: 10.1515/crpm-2022-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Objectives
Bilateral renal agenesis is a rare congenital anomaly that is associated with high neonatal mortality. Bilateral renal agenesis is most often present with anhydramniosis in the mid-trimester.
Case presentation
We report a case of bilateral renal agenesis diagnosed prenatally. We presented the ultrasound and pathology images of this fetus with a new sonographic sign, segmental anterior deviation in the abdominal aorta.
Conclusions
To our knowledge, this is the first reported case of a fetus with a segmental aortic anterior deviation.
Collapse
Affiliation(s)
- Halis Özdemir
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Perinatology , Malatya Turgut Özal University Training Research Hospital , Malatya , Turkey
| | - Belma Gözde Özdemir
- Department of Obstetrics, Gynecology and Reproductive Sciences, Division of Perinatology , Malatya Turgut Özal University Training Research Hospital , Malatya , Turkey
| | - Songül Yerlikaya Kavak
- Department of Pathology , Malatya Turgut Özal University Training Research Hospital , Malatya , Turkey
| | - Şule Şık
- Department of Pathology , Malatya Turgut Özal University Training Research Hospital , Malatya , Turkey
| |
Collapse
|
4
|
Abstract
Importance Bilateral renal agenesis is a rare congenital anomaly associated with poor prognosis. Objective The aims of this article are to review and summarize evidence on prenatal diagnosis and outcomes of bilateral renal agenesis. Evidence Acquisition A search was undertaken using PubMed and ClinicalTrials.gov databases from January 1, 1998, to September 1, 2018. Search terms include "prenatal diagnosis" OR "outcomes" AND "bilateral renal agenesis." Search was limited to English language. Results Fetal ultrasonography is the primary imaging modality for prenatal diagnosis of fetal urogenital tract abnormalities. However, ultrasonography is limited by several factors; it is operator dependent and associated with small field of view, has limited soft-tissue acoustic contrast, and is also influenced by patient habitus and fetal position. Color Doppler ultrasonography can be used as an adjunct to exclude bilateral renal agenesis by visualizing renal arteries. In the literature, prenatal magnetic resonance imaging has been reported to be equal to or superior to prenatal ultrasonography. Bilateral renal agenesis with oligohydramnios/anhydramnios is associated with a poor prognosis; perinatal death occurs secondary to pulmonary hypoplasia in the majority of cases. Conclusions Ultrasonography in combination with color Doppler ultrasonography permits the fetal urinary tract to be assessed in the first and early second trimester of gestation. The magnetic resonance imaging can be used as a complementary adjunctive modality in equivocal or inconclusive ultrasonographic findings.
Collapse
|