1
|
Alexiou O, Despotis G, Kalambokis G, Tsiakas I, Christaki M, Tsiouris S, Xourgia X, Lakkas L, Markopoulos GS, Kolios G, Kolios D, Tsiara S, Milionis H, Christodoulou D, Baltayiannis G. Impact of small intestinal bacterial overgrowth on systemic inflammation, circulatory and renal function, and liver fibrosis in patients with cirrhosis and ascites. Ann Gastroenterol 2024; 37:348-355. [PMID: 38779647 PMCID: PMC11107405 DOI: 10.20524/aog.2024.0881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/11/2024] [Indexed: 05/25/2024] Open
Abstract
Background Small intestinal bacterial overgrowth (SIBO) occurs frequently in patients with cirrhosis, particularly in those with ascites, and promotes the translocation of gut-derived bacterial products into the portal and systemic circulation. We investigated the effects of SIBO on systemic inflammatory activity, circulatory and renal function, and the degree of liver fibrosis in patients with cirrhosis and ascites. Methods Eighty patients with cirrhosis and ascites were prospectively enrolled. SIBO was determined by lactulose breath test. Serum levels of lipopolysaccharide-binding protein (LBP), tumor necrosis factor-α, and interleukin-6, mean arterial pressure (MAP), cardiac output (CO) by echocardiography, systemic vascular resistance (SVR) as MAP/CO ratio, plasma renin activity (PRA), plasma aldosterone, radioisotope-assessed glomerular filtration rate (GFR), and liver stiffness by shear wave elastography were evaluated. Results SIBO was detected in 58 patients (72.5%). Compared to patients without SIBO, those diagnosed with SIBO had significantly higher LBP levels (P<0.001), significantly lower MAP (P<0.001) and SVR (P<0.001), and significantly higher CO (P=0.002) and PRA (P<0.001). Patients with SIBO had significantly lower GFR (P=0.02) and higher liver stiffness (P=0.04) compared to those without SIBO. The presence of SIBO was independently associated with LBP (P=0.007) and PRA (P=0.01). Among patients with SIBO, peak breath hydrogen concentration was significantly correlated with serum LBP (P<0.001), MAP (P<0.001), CO (P=0.008), SVR (P=0.001), PRA (P=0.005), plasma aldosterone (P<0.001), GFR (P<0.001), and liver stiffness (P=0.004). Conclusion SIBO in patients with cirrhosis and ascites may predispose to greater systemic inflammation, circulatory and renal dysfunction, and more advanced liver fibrosis.
Collapse
Affiliation(s)
- Olga Alexiou
- Department of Gastroenterology (Olga Alexiou, Dimitrios Christodoulou, Gerasimos Baltayiannis)
| | - Grigorios Despotis
- First Division of Internal Medicine (Grigorios Despotis, Georgios Kalambokis, Ilias Tsiakas, Maria Christaki, Haralampos Milionis)
| | - Georgios Kalambokis
- First Division of Internal Medicine (Grigorios Despotis, Georgios Kalambokis, Ilias Tsiakas, Maria Christaki, Haralampos Milionis)
| | - Ilias Tsiakas
- First Division of Internal Medicine (Grigorios Despotis, Georgios Kalambokis, Ilias Tsiakas, Maria Christaki, Haralampos Milionis)
| | - Maria Christaki
- First Division of Internal Medicine (Grigorios Despotis, Georgios Kalambokis, Ilias Tsiakas, Maria Christaki, Haralampos Milionis)
| | | | - Xanthi Xourgia
- Laboratory of Nuclear Medicine (Spiridon Tsiouris, Xanthi Xourgia)
| | | | - Georgios S. Markopoulos
- Hematology Laboratory, Unit of Molecular Biology and Translational Flow Cytometry (Georgios S. Markopoulos)
| | | | - Damianos Kolios
- Second Division of Internal Medicine (Damianos Kolios, Stavroula Tsiara), Medical School, University of Ioannina, Greece
| | - Stavroula Tsiara
- Second Division of Internal Medicine (Damianos Kolios, Stavroula Tsiara), Medical School, University of Ioannina, Greece
| | - Haralampos Milionis
- First Division of Internal Medicine (Grigorios Despotis, Georgios Kalambokis, Ilias Tsiakas, Maria Christaki, Haralampos Milionis)
| | - Dimitrios Christodoulou
- Department of Gastroenterology (Olga Alexiou, Dimitrios Christodoulou, Gerasimos Baltayiannis)
| | - Gerasimos Baltayiannis
- Department of Gastroenterology (Olga Alexiou, Dimitrios Christodoulou, Gerasimos Baltayiannis)
| |
Collapse
|
2
|
Ivashkin VT, Fomin VV, Tkacheva ON, Medvedev OS, Poluektova EA, Abdulganieva DI, Abdulkhakov SR, Alexeeva OP, Alekseenko SA, Andreev DN, Baranovsky AY, Zharkova MS, Zolnikova OY, Ivashkin KV, Kliaritskaia IL, Korochanskaya NV, Mammaev SN, Maslennikov RV, Myazin RG, Perekalina MV, Povtoreyko AV, Ulyanin AI, Fadeeva MV, Khlynov IB, Tsukanov VV, Shifrin OS. Small Intestinal Bacterial Overgrowth in Various Specialties of Medical Practice (Literature Review and Expert Council Resolution). RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2024; 34:14-34. [DOI: 10.22416/1382-4376-2024-954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Aim: to discuss current views on the clinical significance, diagnostic opportunities, and therapeutic approaches in the treatment of small intestinal bacterial overgrowth (SIBO) as an important component in the gut microbiota function assessment, to assess the awareness of physicians and the opportunities in the diagnosis and treatment of this disease in patients in the Federal districts of the Russian Federation, as well as to present the proceedings of the Expert Council held on December 16, 2023 in Moscow.Key points. SIBO is a common syndrome often associated with irritable bowel syndrome, liver cirrhosis, asthma, and congestive heart failure, being also a predictor of early death in the elderly. Today, in many regions of the Russian Federation, there are limitations for instrumental diagnosis of this disease — lack of awareness among doctors, unavailability of gas analyzers for diagnosing SIBO, lack of information about the need to diagnose SIBO in the standards of compulsory health insurance. Rifaximin is the first-line treatment due to the highest therapeutic efficacy. One of the ways to increase the efficacy of SIBO treatment is to include strain-specific probiotics in the treatment regimen. Saccharomyces boulardii CNCM I-745 is thought to be the most studied, promising probiotic. The review also presents statistical data on the issues in the diagnosis and treatment of SIBO in the regions of the Russian Federation.Conclusion. Optimization of approaches to the diagnosis and treatment of SIBO, the development of domestic gas analyzers, increasing the awareness of physicians in all regions of the Russian Federation, as well as the development and optimization of clinical recommendations appear to be necessary measures to increase the effectiveness of medical care, the duration and quality of life of the Russian population. These goals can be achieved within the framework of Federal programs under the supervision of specialized reference centers of the Ministry of Health of the Russian Federation.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - V. V. Fomin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. N. Tkacheva
- N.I. Pirogov Russian National Research Medical University
| | - O. S. Medvedev
- M.V. Lomonosov Moscow State University; National Medical Research Center of Cardiology names after Academician E.I. Chazov
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - S. R. Abdulkhakov
- Kazan State Medical University; Kazan (Volga Region) Federal University
| | | | | | | | | | - M. S. Zharkova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - O. Yu. Zolnikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. V. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - R. V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | | | | | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M. V. Fadeeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. V. Tsukanov
- Scientific Research Institute of Medical Problems of the North, Federal Research Center “Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences”
| | - O. S. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
3
|
Efremova I, Maslennikov R, Poluektova E, Medvedev O, Kudryavtseva A, Krasnov G, Fedorova M, Romanikhin F, Bakhitov V, Aliev S, Sedova N, Kuropatkina T, Ivanova A, Zharkova M, Pervushova E, Ivashkin V. Gut Microbiota and Biomarkers of Endothelial Dysfunction in Cirrhosis. Int J Mol Sci 2024; 25:1988. [PMID: 38396668 PMCID: PMC10888218 DOI: 10.3390/ijms25041988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Our aim was to study the association of endothelial dysfunction biomarkers with cirrhosis manifestations, bacterial translocation, and gut microbiota taxa. The fecal microbiome was assessed using 16S rRNA gene sequencing. Plasma levels of nitrite, big endothelin-1, asymmetric dimethylarginine (ADMA), presepsin, and claudin were measured as biomarkers of endothelial dysfunction, bacterial translocation, and intestinal barrier dysfunction. An echocardiography with simultaneous determination of blood pressure and heart rate was performed to evaluate hemodynamic parameters. Presepsin, claudin 3, nitrite, and ADMA levels were higher in cirrhosis patients than in controls. Elevated nitrite levels were associated with high levels of presepsin and claudin 3, the development of hemodynamic circulation, hypoalbuminemia, grade 2-3 ascites, overt hepatic encephalopathy, high mean pulmonary artery pressure, increased abundance of Proteobacteria and Erysipelatoclostridium, and decreased abundance of Oscillospiraceae, Subdoligranulum, Rikenellaceae, Acidaminococcaceae, Christensenellaceae, and Anaerovoracaceae. Elevated ADMA levels were associated with higher Child-Pugh scores, lower serum sodium levels, hypoalbuminemia, grade 2-3 ascites, milder esophageal varices, overt hepatic encephalopathy, lower mean pulmonary artery pressure, and low abundance of Erysipelotrichia and Erysipelatoclostridiaceae. High big endothelin-1 levels were associated with high levels of presepsin and sodium, low levels of fibrinogen and cholesterol, hypocoagulation, increased Bilophila and Coprobacillus abundances, and decreased Alloprevotella abundance.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
- Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Pogodinskaya Str. 1-1, 119435 Moscow, Russia
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Millionnaya Str. 6, 107564 Moscow, Russia (N.S.)
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
- Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Pogodinskaya Str. 1-1, 119435 Moscow, Russia
| | - Oleg Medvedev
- Pharmacology Department, Lomonosov Moscow State University, Leninskie Gori 1, 119991 Moscow, Russia; (O.M.)
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Maria Fedorova
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova Str. 32, 119991 Moscow, Russia
| | - Filipp Romanikhin
- Pharmacology Department, Lomonosov Moscow State University, Leninskie Gori 1, 119991 Moscow, Russia; (O.M.)
| | - Vyacheslav Bakhitov
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Millionnaya Str. 6, 107564 Moscow, Russia (N.S.)
| | - Salekh Aliev
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Millionnaya Str. 6, 107564 Moscow, Russia (N.S.)
- First Hospital Surgery Department, Pirogov Russian National Research Medical University, Ostrovityanova Str. 1-7, 117997 Moscow, Russia
| | - Natalia Sedova
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Millionnaya Str. 6, 107564 Moscow, Russia (N.S.)
- Department of Clinical Laboratory Diagnostics, FGBOU DPO “Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation”, Barricadnaya Str. 2/1-2, 125993 Moscow, Russia
| | - Tatiana Kuropatkina
- Pharmacology Department, Lomonosov Moscow State University, Leninskie Gori 1, 119991 Moscow, Russia; (O.M.)
| | - Anastasia Ivanova
- Pharmacology Department, Lomonosov Moscow State University, Leninskie Gori 1, 119991 Moscow, Russia; (O.M.)
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
| | - Ekaterina Pervushova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Pogodinskaya Str. 1-1, 119435 Moscow, Russia; (I.E.); (E.P.)
- Scientific Community for the Promotion of the Clinical Study of the Human Microbiome, Pogodinskaya Str. 1-1, 119435 Moscow, Russia
| |
Collapse
|
4
|
Efremova I, Maslennikov R, Zharkova M, Poluektova E, Benuni N, Kotusov A, Demina T, Ivleva A, Adzhieva F, Krylova T, Ivashkin V. Efficacy and Safety of a Probiotic Containing Saccharomyces boulardii CNCM I-745 in the Treatment of Small Intestinal Bacterial Overgrowth in Decompensated Cirrhosis: Randomized, Placebo-Controlled Study. J Clin Med 2024; 13:919. [PMID: 38337613 PMCID: PMC10856456 DOI: 10.3390/jcm13030919] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
(1) Background: The aim was to evaluate the effectiveness of the probiotic containing Saccharomyces boulardii in the treatment of small intestinal bacterial overgrowth (SIBO) in patients with decompensated cirrhosis. (2) Methods: This was a blinded, randomized, placebo-controlled study. (3) Results: After 3 months of treatment, SIBO was absent in 80.0% of patients in the probiotic group and in 23.1% of patients in the placebo group (p = 0.002). The patients with eliminated SIBO had decreased frequency of ascites and hepatic encephalopathy, the increased platelets and albumin levels, the decreased blood levels of total bilirubin, biomarkers of bacterial translocation (lipopolysaccharide [LPS]) and systemic inflammation (C-reactive protein), and positive changes in markers of hyperdynamic circulation compared with the state at inclusion. There were no significant changes in the claudin 3 level (the intestinal barrier biomarker) in these patients. No significant changes were observed in the group of patients with persistent SIBO. The serum level of nitrate (endothelial dysfunction biomarker) was lower in patients with eradicated SIBO than in patients with persistent SIBO. One (5.3%) patient with eradicated SIBO and six (42.9%) patients with persistent SIBO died within the first year of follow-up (p = 0.007). (4) Conclusions: SIBO eradication was an independent predictor of a favorable prognosis during the first year of follow-up.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow 119435, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow 119435, Russia
| | - Nona Benuni
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| | - Aleksandr Kotusov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| | - Tatyana Demina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| | - Aleksandra Ivleva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| | - Farida Adzhieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| | - Taisiya Krylova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119992, Russia (M.Z.); (E.P.); (N.B.); (A.K.); (A.I.); (T.K.)
| |
Collapse
|
5
|
Maslennikov R, Poluektova E, Zolnikova O, Sedova A, Kurbatova A, Shulpekova Y, Dzhakhaya N, Kardasheva S, Nadinskaia M, Bueverova E, Nechaev V, Karchevskaya A, Ivashkin V. Gut Microbiota and Bacterial Translocation in the Pathogenesis of Liver Fibrosis. Int J Mol Sci 2023; 24:16502. [PMID: 38003692 PMCID: PMC10671141 DOI: 10.3390/ijms242216502] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/11/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Cirrhosis is the end result of liver fibrosis in chronic liver diseases. Studying the mechanisms of its development and developing measures to slow down and regress it based on this knowledge seem to be important tasks for medicine. Currently, disorders of the gut-liver axis have great importance in the pathogenesis of cirrhosis. However, gut dysbiosis, which manifests as increased proportions in the gut microbiota of Bacilli and Proteobacteria that are capable of bacterial translocation and a decreased proportion of Clostridia that strengthen the intestinal barrier, occurs even at the pre-cirrhotic stage of chronic liver disease. This leads to the development of bacterial translocation, a process by which those microbes enter the blood of the portal vein and then the liver tissue, where they activate Kupffer cells through Toll-like receptor 4. In response, the Kupffer cells produce profibrogenic cytokines, which activate hepatic stellate cells, stimulating their transformation into myofibroblasts that produce collagen and other elements of the extracellular matrix. Blocking bacterial translocation with antibiotics, probiotics, synbiotics, and other methods could slow down the progression of liver fibrosis. This was shown in a number of animal models but requires further verification in long-term randomized controlled trials with humans.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Alla Sedova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anastasia Kurbatova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Yulia Shulpekova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Natyia Dzhakhaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Svetlana Kardasheva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Maria Nadinskaia
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Elena Bueverova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Nechaev
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Anna Karchevskaya
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119048 Moscow, Russia (A.S.); (N.D.); (M.N.); (E.B.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119048 Moscow, Russia
| |
Collapse
|
6
|
Efremova I, Maslennikov R, Poluektova E, Zharkova M, Kudryavtseva A, Krasnov G, Fedorova M, Shirokova E, Kozlov E, Levshina A, Ivashkin V. Gut Dysbiosis and Hemodynamic Changes as Links of the Pathogenesis of Complications of Cirrhosis. Microorganisms 2023; 11:2202. [PMID: 37764046 PMCID: PMC10537778 DOI: 10.3390/microorganisms11092202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
The aim was to evaluate the relationship between gut dysbiosis and hemodynamic changes (hyperdynamic circulation) in cirrhosis, and between hemodynamic changes and complications of this disease. This study included 47 patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. Echocardiography with a simultaneous assessment of blood pressure and heart rate was performed to assess systemic hemodynamics. Patients with hyperdynamic circulation had more severe cirrhosis, lower albumin, sodium and prothrombin levels, higher C-reactive protein, aspartate aminotransferase and total bilirubin levels, and higher incidences of portopulmonary hypertension, ascites, overt hepatic encephalopathy, hypoalbuminemia, hypoprothrombinemia, systemic inflammation, and severe hyperbilirubinemia than patients with normodynamic circulation. Patients with hyperdynamic circulation compared with those with normodynamic circulation had increased abundance of Proteobacteria, Enterobacteriaceae, Bacilli, Streptococcaceae, Lactobacillaceae, Fusobacteria, Micrococcaceae, Intestinobacter, Clostridium sensu stricto, Proteus and Rumicoccus, and decreased abundance of Bacteroidetes, Bacteroidaceae, Holdemanella, and Butyrivibrio. The systemic vascular resistance and cardiac output values correlated with the abundance of Proteobacteria, Enterobacteriaceae, Bacilli, Streptococcaceae, Lactobacillaceae, Micrococcaceae, and Fusobacteria. Heart rate and cardiac output value were negatively correlated with the abundance of Bacteroidetes. The mean pulmonary artery pressure value was positively correlated with the abundance of Proteobacteria and Micrococcaceae, and negatively with the abundance of Holdemanella.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119991 Moscow, Russia
- Consultative and Diagnostic Center No. 2, Moscow Health Department, 107564 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119991 Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - Maria Fedorova
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, 119991 Moscow, Russia (G.K.); (M.F.)
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, 119991 Moscow, Russia;
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, 119991 Moscow, Russia;
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119991 Moscow, Russia (E.P.); (M.Z.); (A.L.); (V.I.)
| |
Collapse
|
7
|
Maslennikov R, Alieva A, Poluektova E, Zharikov Y, Suslov A, Letyagina Y, Vasileva E, Levshina A, Kozlov E, Ivashkin V. Sarcopenia in cirrhosis: Prospects for therapy targeted to gut microbiota. World J Gastroenterol 2023; 29:4236-4251. [PMID: 37545638 PMCID: PMC10401661 DOI: 10.3748/wjg.v29.i27.4236] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/25/2023] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Decreased muscle mass and function, also known as sarcopenia, is common in patients with cirrhosis and is associated with a poor prognosis. Although the pathogenesis of this disorder has not been fully elucidated, a disordered gut-muscle axis probably plays an important role. Decreased barrier function of the gut and liver, gut dysbiosis, and small intestinal bacterial overgrowth (SIBO) can lead to increased blood levels of ammonia, lipopolysaccharides, pro-inflammatory mediators, and myostatin. These factors have complex negative effects on muscle mass and function. Drug interventions that target the gut microbiota (long-term use of rifaximin, lactulose, lactitol, or probiotics) positively affect most links of the compromised gut-muscle axis in patients with cirrhosis by decreasing the levels of hyperammonemia, bacterial translocation, and systemic inflammation and correcting gut dysbiosis and SIBO. However, although these drugs are promising, they have not yet been investigated in randomized controlled trials specifically for the treatment and prevention of sarcopenia in patients with cirrhosis. No data exist on the effects of fecal transplantation on most links of gut-muscle axis in cirrhosis; however, the results of animal experimental studies are promising.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Yury Zharikov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Andrey Suslov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Yana Letyagina
- Department of Human Anatomy and Histology, Sechenov University, Moscow 119435, Russia
| | - Ekaterina Vasileva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Evgenii Kozlov
- Laboratory of Immunopathology, Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| |
Collapse
|
8
|
Efremova I, Maslennikov R, Poluektova E, Vasilieva E, Zharikov Y, Suslov A, Letyagina Y, Kozlov E, Levshina A, Ivashkin V. Epidemiology of small intestinal bacterial overgrowth. World J Gastroenterol 2023; 29:3400-3421. [PMID: 37389240 PMCID: PMC10303511 DOI: 10.3748/wjg.v29.i22.3400] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/31/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023] Open
Abstract
Small intestinal bacterial overgrowth (SIBO) is defined as an increase in the bacterial content of the small intestine above normal values. The presence of SIBO is detected in 33.8% of patients with gastroenterological complaints who underwent a breath test, and is significantly associated with smoking, bloating, abdominal pain, and anemia. Proton pump inhibitor therapy is a significant risk factor for SIBO. The risk of SIBO increases with age and does not depend on gender or race. SIBO complicates the course of a number of diseases and may be of pathogenetic significance in the development of their symptoms. SIBO is significantly associated with functional dyspepsia, irritable bowel syndrome, functional abdominal bloating, functional constipation, functional diarrhea, short bowel syndrome, chronic intestinal pseudo-obstruction, lactase deficiency, diverticular and celiac diseases, ulcerative colitis, Crohn's disease, cirrhosis, metabolic-associated fatty liver disease (MAFLD), primary biliary cholangitis, gastroparesis, pancreatitis, cystic fibrosis, gallstone disease, diabetes, hypothyroidism, hyperlipidemia, acromegaly, multiple sclerosis, autism, Parkinson's disease, systemic sclerosis, spondylarthropathy, fibromyalgia, asthma, heart failure, and other diseases. The development of SIBO is often associated with a slowdown in orocecal transit time that decreases the normal clearance of bacteria from the small intestine. The slowdown of this transit may be due to motor dysfunction of the intestine in diseases of the gut, autonomic diabetic polyneuropathy, and portal hypertension, or a decrease in the motor-stimulating influence of thyroid hormones. In a number of diseases, including cirrhosis, MAFLD, diabetes, and pancreatitis, an association was found between disease severity and the presence of SIBO. Further work on the effect of SIBO eradication on the condition and prognosis of patients with various diseases is required.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Ekaterina Vasilieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Yury Zharikov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 125009, Russia
| | - Andrey Suslov
- Department of Human Anatomy and Histology, Sechenov University, Moscow 125009, Russia
| | - Yana Letyagina
- N.V. Sklifosovsky Institute of Clinical Medicine, Sechenov University, Moscow 119991, Russia
| | - Evgenii Kozlov
- Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Department of Clinical Immunology and Allergy, Sechenov University, Moscow 119991, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| |
Collapse
|
9
|
Efremova I, Maslennikov R, Alieva A, Poluektova E, Ivashkin V. Small Intestinal Bacterial Overgrowth Is Associated with Poor Prognosis in Cirrhosis. Microorganisms 2023; 11:1017. [PMID: 37110440 PMCID: PMC10143588 DOI: 10.3390/microorganisms11041017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Small intestinal bacterial overgrowth (SIBO) is associated with numerous manifestations of cirrhosis. To determine whether the presence of SIBO affects the prognosis in cirrhosis was the aim of the study. METHODS This prospective cohort study included 50 patients. All participants underwent a lactulose hydrogen breath test for SIBO. The follow-up period was 4 years. RESULTS SIBO was detected in 26 (52.0%) patients: in 10 (52.6%) patients with compensated cirrhosis and in 16 (51.6%) ones with decompensated cirrhosis. Twelve (46.2%) patients with SIBO and four (16.7%) patients without SIBO died within 4 years (p = 0.009). Among patients with decompensated cirrhosis, 8 (50.0%) patients with SIBO and 3 (20.0%) patients without SIBO died (p = 0.027). Among patients with compensated cirrhosis, four (40.0%) patients with SIBO and one (11.1%) patient without SIBO died (p = 0.045). Among patients with SIBO, there was no difference in mortality between patients with compensated and decompensated cirrhosis (p = 0.209). It was the same for patients without SIBO (p = 0.215). SIBO affects the prognosis only in the first year of follow-up in decompensated cirrhosis, and only in subsequent years in compensated cirrhosis. Presence of SIBO (p = 0.028; HR = 4.2(1.2-14.9)) and serum albumin level (p = 0.027) were significant independent risk factors for death in cirrhosis. CONCLUSIONS SIBO is associated with poor prognosis in cirrhosis.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119121 Moscow, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, 119121 Moscow, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, 119121 Moscow, Russia
| |
Collapse
|
10
|
Maslennikov R, Efremova I, Ivashkin V, Zharkova M, Poluektova E, Shirokova E, Ivashkin K. Effect of probiotics on hemodynamic changes and complications associated with cirrhosis: A pilot randomized controlled trial. World J Hepatol 2022; 14:1667-1677. [PMID: 36157871 PMCID: PMC9453455 DOI: 10.4254/wjh.v14.i8.1667] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 07/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bacterial translocation exacerbates the hyperdynamic circulation observed in cirrhosis and contributes to a more severe disease course. Probiotics may reduce bacterial translocation and may therefore be useful to redress the circulatory imbalance. AIM To investigate the effect of probiotics on hemodynamic parameters, systemic inflammation, and complications of cirrhosis in this randomized placebo-controlled trial. METHODS This single-blind randomized placebo-controlled study included 40 patients with Child-Pugh class B and C cirrhosis; 24 patients received probiotics (Saccharomyces boulardii) for 3 mo, and 16 patients received a placebo over the same period. Liver function and the systemic hemodynamic status were evaluated pre- and post-intervention. Echocardiography and simultaneous blood pressure and heart rate monitoring were performed to evaluate systemic hemodynamic indicators. Cardiac output and systemic vascular resistance were calculated. RESULTS Following a 3-mo course of probiotics in comparison to the control group, we observed amelioration of hyperdynamic circulation [a decrease in cardiac output (P = 0.026) and an increase in systemic vascular resistance (P = 0.026)] and systemic inflammation [a decrease in serum C-reactive protein levels (P = 0.044)], with improved liver function [an increase in serum albumin (P = 0.001) and a decrease in the value of Child-Pugh score (P = 0.001)] as well as a reduction in the severity of ascites (P = 0.022), hepatic encephalopathy (P = 0.048), and cholestasis [a decrease in serum alkaline phosphatase (P = 0.016) and serum gamma-glutamyl transpeptidase (P = 0.039) activity] and an increase in platelet counts (P < 0.001) and serum sodium level (P = 0.048). CONCLUSION Probiotic administration was associated with amelioration of hyperdynamic circulation and the associated complications of cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Consultative and Diagnostic Center No. 2 of Moscow Health Department , Moscow 107764, Russia.
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Konstantin Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
11
|
Ivashkin VT, Maev IV, Abdulganieva DI, Alekseeva OP, Alekseenko SA, Zolnikova OY, Korochanskaya NV, Medvedev OS, Poluektova EA, Simanenkov VI, Trukhmanov AS, Khlynov IB, Tsukanov VV, Shifrin OS, Ivashkin KV, Lapina TL, Maslennikov RV, Fadeeva MV, Ulyanin AI. Practical Recommendation of the Scientific Сommunity for Human Microbiome Research (CHMR) and the Russian Gastroenterological Association (RGA) on Small Intestinal Bacterial Overgrowth in Adults. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2022; 32:68-85. [DOI: 10.22416/1382-4376-2022-32-3-68-85] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2024]
Abstract
Aim. To optimize the choice of treatment strategies by physicians and gastroenterologists to improve treatment and prevention of small intestinal bacterial overgrowth (SIBO) in adults.Key points. SIBO is a condition characterized by an increased amount and/or abnormal composition of the microbiota in the small intestine. Clinically, the syndrome is manifested by nonspecific gastroenterological complaints and the development of malabsorption syndrome. Most often, SIBO is associated with various chronic non- infectious diseases (both diseases of the gastrointestinal tract, and the cardiovascular system and the neuromuscular apparatus) and can affect the severity of their symptoms. Specific methods for diagnosing SIBO are the culture method and breath tests. The main approaches to the treatment of SIBO include the elimination of the underlying cause of its occurrence, the use of antibacterial drugs and adherence to dietary recommendations (elemental diet).Conclusion. Small intestinal bacterial overgrowth is common in patients with various diseases, but has non-specific manifestations, so proper diagnosis of this condition is required. SIBO therapy involves prescription of antibacterial agents, the most studied of which is the non-absorbable antibiotic rifaximin-α.
Collapse
Affiliation(s)
- V. T. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - I. V. Maev
- Yevdokimov Moscow State University of Medicine and Dentistry
| | | | | | | | - O. Yu. Zolnikova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - O. S. Medvedev
- Lomonosov Moscow State University;
Institute of Experimental Cardiology of National Medical Research Center of Cardiology
| | - E. A. Poluektova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - A. S. Trukhmanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - V. V. Tsukanov
- Research Institute for Medical Problems in the North — Division of Krasnoyarsk Scientific Centre of the Siberian Branch of the RAS
| | - O. S. Shifrin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. V. Ivashkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - T. L. Lapina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - R. V. Maslennikov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - M. V. Fadeeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. I. Ulyanin
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
12
|
Maslennikov R, Ivashkin V, Alieva A, Poluektova E, Kudryavtseva A, Krasnov G, Zharkova M, Zharikov Y. Gut dysbiosis and body composition in cirrhosis. World J Hepatol 2022; 14:1210-1225. [PMID: 35978666 PMCID: PMC9258262 DOI: 10.4254/wjh.v14.i6.1210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2022] [Accepted: 05/14/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut dysbiosis and changes in body composition (i.e., a decrease in the proportion of muscle mass and an increase in extracellular fluid) are common in cirrhosis. AIM To study the relationship between the gut microbiota and body composition in cirrhosis. METHODS This observational study included 46 patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. Multifrequency bioelectrical impedance analysis was performed to assess body composition in these patients. RESULTS An increase in fat mass and a decrease in body cell mass were noted in 23/46 (50.0%) and 15/46 (32.6%) patients, respectively. Changes in the gut microbiome were not independently associated with the fat mass percentage in cirrhosis. The abundance of Bacteroidaceae (P = 0.041) and Eggerthella (P = 0.001) increased, whereas that of Erysipelatoclostridiaceae (P = 0.006), Catenibacterium (P = 0.021), Coprococcus (P = 0.033), Desulfovibrio (P = 0.043), Intestinimonas (P = 0.028), and Senegalimassilia (P = 0.015) decreased in the gut microbiome of patients with body cell mass deficiency. The amount of extracellular fluid increased in 22/46 (47.6%) patients. Proteobacteria abundance (P < 0.001) increased, whereas Firmicutes (P = 0.023), Actinobacteria (P = 0.026), Bacilli (P = 0.008), Anaerovoraceceae (P = 0.027), Christensenellaceae (P = 0.038), Eggerthellaceae (P = 0.047), Erysipelatoclostridiaceae (P = 0.015), Erysipelotrichaceae (P = 0.003), Oscillospiraceae (P = 0.024), Rikenellaceae (P = 0.002), Collinsella (P = 0.030), Hungatella (P = 0.040), Peptococcaceae (P = 0.023), Slackia (P = 0.008), and Senegalimassilia (P = 0.024) abundance decreased in these patients. Patients with clinically significant ascites (n = 9) had a higher abundance of Proteobacteria (P = 0.031) and a lower abundance of Actinobacteria (P = 0.019) and Bacteroidetes (P = 0.046) than patients without clinically significant ascites (n = 37). CONCLUSION Changes in the amount of body cell mass and extracellular fluid are associated with changes in the gut microbiome in cirrhosis patients.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Department of Internal Medicine, Сonsultative and Diagnostic Center No. 2, Moscow City Health Department, Moscow 107564, Russia.
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Anna Kudryavtseva
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - George Krasnov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maria Zharkova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Yuri Zharikov
- Department of Anatomy, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
13
|
Desruelle AV, de Maistre S, Gaillard S, Richard S, Tardivel C, Martin JC, Blatteau JE, Boussuges A, Rives S, Risso JJ, Vallee N. Cecal Metabolomic Fingerprint of Unscathed Rats: Does It Reflect the Good Response to a Provocative Decompression? Front Physiol 2022; 13:882944. [PMID: 35655958 PMCID: PMC9152359 DOI: 10.3389/fphys.2022.882944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
On one side, decompression sickness (DCS) with neurological disorders lead to a reshuffle of the cecal metabolome of rats. On the other side, there is also a specific and different metabolomic signature in the cecum of a strain of DCS-resistant rats, that are not exposed to hyperbaric protocol. We decide to study a conventional strain of rats that resist to an accident-provoking hyperbaric exposure, and we hypothesize that the metabolomic signature put forward may correspond to a physiological response adapted to the stress induced by diving. The aim is to verify and characterize whether the cecal compounds of rats resistant to the provocative dive have a cecal metabolomic signature different from those who do not dive. 35 asymptomatic diver rats are selected to be compared to 21 rats non-exposed to the hyperbaric protocol. Because our aim is essentially to study the differences in the cecal metabolome associated with the hyperbaric exposure, about half of the rats are fed soy and the other half of maize in order to better rule out the effect of the diet itself. Lower levels of IL-1β and glutathione peroxidase (GPX) activity are registered in blood of diving rats. No blood cell mobilization is noted. Conventional and ChemRICH approaches help the metabolomic interpretation of the 185 chemical compounds analyzed in the cecal content. Statistical analysis show a panel of 102 compounds diet related. 19 are in common with the hyperbaric protocol effect. Expression of 25 compounds has changed in the cecal metabolome of rats resistant to the provocative dive suggesting an alteration of biliary acids metabolism, most likely through actions on gut microbiota. There seem to be also weak changes in allocations dedicated to various energy pathways, including hormonal reshuffle. Some of the metabolites may also have a role in regulating inflammation, while some may be consumed for the benefit of oxidative stress management.
Collapse
Affiliation(s)
- Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sébastien de Maistre
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | | | | | - Catherine Tardivel
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Charles Martin
- C2VN, INRAE, INSERM, BIOMET, Aix Marseille University, Faculté de Médecine La Timone, Marseille, France
| | - Jean-Eric Blatteau
- Service de Médecine Hyperbare Expertise Plongée, Hôpital d'Instruction des Armées Sainte-Anne, Toulon Cedex, France
| | - Alain Boussuges
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Sarah Rives
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
| | - Nicolas Vallee
- Institut de Recherche Biomédicale des Armées, Equipe de Recherche Subaquatique Opérationnelle, Toulon Cedex, France
- *Correspondence: Nicolas Vallee,
| |
Collapse
|
14
|
Maslennikov R, Ivashkin V, Efremova I, Poluektova E, Kudryavtseva A, Krasnov G. Gut dysbiosis and small intestinal bacterial overgrowth as independent forms of gut microbiota disorders in cirrhosis. World J Gastroenterol 2022; 28:1067-1077. [PMID: 35431497 PMCID: PMC8968519 DOI: 10.3748/wjg.v28.i10.1067] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/29/2021] [Accepted: 02/09/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut dysbiosis and small intestinal bacterial overgrowth (SIBO) are commonly observed in patients with cirrhosis. Despite the substantial number of articles describing the relations between disorders of gut microbiota and various manifestations of cirrhosis, dysbiosis and SIBO were always studied separately. AIM To study the relationship of gut dysbiosis and SIBO in cirrhosis. METHODS This observational study included 47 in-patients with cirrhosis. Stool microbiome was assessed using 16S rRNA gene sequencing. SIBO was assessed using the lactulose hydrogen breath test. RESULTS SIBO was found in 24/47 (51.1%) patients. Patients with SIBO had a higher abundance of Firmicutes (P = 0.017) and Fusobacteria (P = 0.011), and a lower abundance of Bacteroidetes (P = 0.013) than patients without SIBO. This increase in the abundance of Firmicutes occurred mainly due to an increase in the abundance of bacteria from the genus Blautia (P = 0.020) of the Lachnospiraceae family (P = 0.047), while the abundance of other major families of this phylum [Ruminococcaceae (P = 0.856), Peptostreptococcaceae (P = 0.066), Clostridiaceae (P = 0.463), Eubacteriaceae (P = 0.463), Lactobacillaceae (P = 0.413), and Veillonellaceae (P = 0.632)] did not differ significantly between the patients with and without SIBO. Reduced level of Bacteroidetes in samples from patients with SIBO was a result of the decrease in bacterial numbers from all the major families of this phylum [Bacteroidaceae (P = 0.014), Porphyromonadaceae (P = 0.002), and Rikenellaceae (P = 0.047)], with the exception of Prevotellaceae (P = 0.941). There were no significant differences in the abundance of taxa that were the main biomarkers of cirrhosis-associated gut dysbiosis [Proteobacteria (P = 0.790), Bacilli (P = 0.573), Enterobacteriaceae (P = 0.632), Streptococcaceae (P = 0.170), Staphylococcaceae (P = 0.450), and Enterococcaceae (P = 0.873)] between patients with and without SIBO. CONCLUSION Despite the differences observed in the gut microbiome between patients with and without SIBO, gut dysbiosis and SIBO are most likely independent disorders of gut microbiota in cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Department of Internal Medicine 1, Сonsultative and Diagnostic Center 2 of the Moscow City Health Department, Moscow 107564, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Anna Kudryavtseva
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - George Krasnov
- Laboratory of Postgenomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
15
|
Maslennikov R, Ivashkin V, Efremova I, Poluektova E, Shirokova E. Gut-liver axis in cirrhosis: Are hemodynamic changes a missing link? World J Clin Cases 2021; 9:9320-9332. [PMID: 34877269 PMCID: PMC8610853 DOI: 10.12998/wjcc.v9.i31.9320] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Recent evidence suggests that the condition of the gut and its microbiota greatly influence the course of liver disease, especially cirrhosis. This introduces the concept of the gut-liver axis, which can be imagined as a chain connected by several links. Gut dysbiosis, small intestinal bacterial overgrowth, and intestinal barrier alteration lead to bacterial translocation, resulting in systemic inflammation. Systemic inflammation further causes vasodilation, arterial hypotension, and hyperdynamic circulation, leading to the aggravation of portal hypertension, which contributes to the development of complications of cirrhosis, resulting in a poorer prognosis. The majority of the data underlying this model were obtained initially from animal experiments, and most of these correlations were further reproduced in studies including patients with cirrhosis. However, despite the published data on the relationship of the disorders of the gut microbiota with the complications of cirrhosis and the proposed pathogenetic role of hemodynamic disorders in their development, the direct relations between gut dysbiosis and hemodynamic changes in this disease are poorly studied. They remain a missing link in the gut-liver axis and a challenge for future research.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", Moscow 119435, Russia
- Department of Internal Medicine, Consultative and Diagnostic Center of the Moscow City Health Department, Moscow 107564, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization "Scientific Community for the Promotion of the Clinical Study of the Human Microbiome", Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
16
|
Maslennikov R, Ivashkin V, Efremova I, Poluektova E, Shirokova E. Probiotics in hepatology: An update. World J Hepatol 2021; 13:1154-1166. [PMID: 34630882 PMCID: PMC8473492 DOI: 10.4254/wjh.v13.i9.1154] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The gut-liver axis plays an important role in the pathogenesis of various liver diseases. Probiotics are living bacteria that may be used to correct disorders of this axis. Notable progress has been made in the study of probiotic drugs for the treatment of various liver diseases in the last decade. It has been proven that probiotics are useful for hepatic encephalopathy, but their effects on other symptoms and syndromes of cirrhosis are poorly studied. Their effectiveness in the treatment of metabolic associated fatty liver disease has been shown both in experimental models and in clinical trials, but their effect on the prognosis of this disease has not been described. The beneficial effects of probiotics in alcoholic liver disease have been shown in many experimental studies, but there are very few clinical trials to support these findings. The effects of probiotics on the course of other liver diseases are either poorly studied (such as primary sclerosing cholangitis, chronic hepatitis B and C, and autoimmune hepatitis) or not studied at all (such as primary biliary cholangitis, hepatitis A and E, Wilson's disease, hemochromatosis, storage diseases, and vascular liver diseases). Thus, despite the progress in the study of probiotics in hepatology over the past decade, there are many unexplored and unclear questions surrounding this topic.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
- Department of Internal Medicine, Consultative and Diagnostic Center of the Moscow City Health Department, Moscow 107564, Russia.
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- Scientific Community for Human Microbiome Research, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
17
|
Maslennikov R, Ivashkin V, Efremova I, Alieva A, Kashuh E, Tsvetaeva E, Poluektova E, Shirokova E, Ivashkin K. Gut dysbiosis is associated with poorer long-term prognosis in cirrhosis. World J Hepatol 2021; 13:557-570. [PMID: 34131470 PMCID: PMC8173342 DOI: 10.4254/wjh.v13.i5.557] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gut dysbiosis is common in cirrhosis. AIM To study the influence of gut dysbiosis on prognosis in cirrhosis. METHODS The case-control study included 48 in-patients with cirrhosis and 21 healthy controls. Stool microbiome was assessed using 16S ribosomal ribonucleic acid gene sequencing. We used modified dysbiosis ratio (MDR): [Bacilli (%) + Proteobacteria (%)]/[Clostridia (%) + Bacteroidetes (%)]. Patients with MDR more the median made up the group with severe dysbiosis, others did the group with non-severe dysbiosis. The follow-up period was 4 years. RESULTS The mortality rate of patients with severe dysbiosis was significantly higher than that of patients with non-severe dysbiosis (54.2% vs 12.5%; P = 0.001). The presence of severe dysbiosis was independent risk factors for death [hazard ratio = 8.6 × (1.9-38.0); P = 0.005]. The abundance of Enterobacteriaceae (P = 0.002), Proteobacteria (P = 0.002), and Lactobacillaceae (P = 0.025) was increased and the abundance of Firmicutes (P = 0.025) and Clostridia (P = 0.045) was decreased in the deceased patients compared with the survivors. The deceased patients had a higher MDR value than the survivors [0.131 × (0.069-0.234) vs 0.034 × (0.009-0.096); P = 0.004]. If we applied an MDR value of 0.14 as the cutoff point, then it predicted patient death within the next year with a sensitivity of 71.4% and a specificity of 82.9% [area under the curve = 0.767 × (0.559-0.974)]. MDR was higher in patients with cirrhosis than in health controls [0.064 × (0.017-0.131) vs 0.005 × (0.002-0.007); P < 0.001], and in patients with decompensated cirrhosis than in patients with compensated cirrhosis [0.106 × (0.023-0.211) vs 0.033 × (0.012-0.074); P = 0.031]. MDR correlated negatively with prothrombin (r = -0.295; P = 0.042), cholinesterase (r = -0.466; P = 0.014) and serum albumin (r = -0.449; P = 0.001) level and positively with Child-Turcotte-Pugh scale value (r = 0.360; P = 0.012). CONCLUSION Gut dysbiosis is associated with a poorer long-term prognosis in cirrhosis.
Collapse
Affiliation(s)
- Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study of the Human Microbiome”, Moscow 119435, Russia.
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Aliya Alieva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Ekaterina Kashuh
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Ekaterina Tsvetaeva
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Elena Shirokova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| | - Konstantin Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow 119435, Russia
| |
Collapse
|
18
|
de Maistre S, Gaillard S, Martin JC, Richard S, Boussuges A, Rives S, Desruelle AV, Blatteau JE, Tardivel C, Risso JJ, Vallée N. Cecal metabolome fingerprint in a rat model of decompression sickness with neurological disorders. Sci Rep 2020; 10:15996. [PMID: 32994526 PMCID: PMC7524739 DOI: 10.1038/s41598-020-73033-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 09/11/2020] [Indexed: 01/19/2023] Open
Abstract
Massive bubble formation after diving can lead to decompression sickness (DCS), which can result in neurological disorders. We demonstrated that hydrogen production from intestinal fermentation could exacerbate DCS in rats fed with a standard diet. The aim of this study is to identify a fecal metabolomic signature that may result from the effects of a provocative hyperbaric exposure. The fecal metabolome was studied in two groups of rats previously fed with maize or soy in order to account for diet effects. 64 animals, weighing 379.0_20.2 g on the day of the dive, were exposed to the hyperbaric protocol. The rats were separated into two groups: 32 fed with maize (Div MAIZE) and 32 fed with soy (Div SOY). Gut fermentation before the dive was estimated by measuring exhaled hydrogen. Following hyperbaric exposure, we assessed for signs of DCS. Blood was analyzed to assay inflammatory cytokines. Conventional and ChemRICH approaches helped the metabolomic interpretation of the cecal content. The effect of the diet is very marked at the metabolomic level, a little less in the blood tests, without this appearing strictly in the clinic status. Nevertheless, 37 of the 184 metabolites analyzed are linked to clinical status. 35 over-expressed compounds let suggest less intestinal absorption, possibly accompanied by an alteration of the gut microbial community, in DCS. The decrease in another metabolite suggests hepatic impairment. This spectral difference of the ceca metabolomes deserves to be studied in order to check if it corresponds to functional microbial particularities.
Collapse
Affiliation(s)
- Sébastien de Maistre
- Service de médecine Hyperbare Expertise plongée, Hôpital d'Instruction des Armées Sainte-Anne, BP 600, 83800, Toulon Cedex 9, France
| | | | - Jean-Charles Martin
- UMR INRA 12060/INSERM1263/AMU C2VN, Plateforme Métabolomique, Faculté de Médecine la Timone, 13385, Marseille Cedex, France
| | | | - Alain Boussuges
- Institut de Recherche Biomédicale des Armées-Equipe de Recherche Subaquatique Opérationnelle, 83800, Toulon Cedex 9, France
| | - Sarah Rives
- Institut de Recherche Biomédicale des Armées-Equipe de Recherche Subaquatique Opérationnelle, 83800, Toulon Cedex 9, France
| | - Anne-Virginie Desruelle
- Institut de Recherche Biomédicale des Armées-Equipe de Recherche Subaquatique Opérationnelle, 83800, Toulon Cedex 9, France
| | - Jean-Eric Blatteau
- Service de médecine Hyperbare Expertise plongée, Hôpital d'Instruction des Armées Sainte-Anne, BP 600, 83800, Toulon Cedex 9, France
| | - Catherine Tardivel
- UMR INRA 12060/INSERM1263/AMU C2VN, Plateforme Métabolomique, Faculté de Médecine la Timone, 13385, Marseille Cedex, France
| | - Jean-Jacques Risso
- Institut de Recherche Biomédicale des Armées-Equipe de Recherche Subaquatique Opérationnelle, 83800, Toulon Cedex 9, France
| | - Nicolas Vallée
- Institut de Recherche Biomédicale des Armées-Equipe de Recherche Subaquatique Opérationnelle, 83800, Toulon Cedex 9, France.
| |
Collapse
|