1
|
Pinto AF, Nunes JS, Severino Martins JE, Leal AC, Silva CCVC, da Silva AJFS, da Cruz Olímpio DS, da Silva ETN, Campos TA, Lima Leite AC. Thiazole, Isatin and Phthalimide Derivatives Tested in vivo against Cancer Models: A Literature Review of the Last Six Years. Curr Med Chem 2024; 31:2991-3032. [PMID: 37170994 DOI: 10.2174/0929867330666230426154055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND Cancer is a disease characterized by the abnormal multiplication of cells and is the second leading cause of death in the world. The search for new effective and safe anticancer compounds is ongoing due to factors such as low selectivity, high toxicity, and multidrug resistance. Thus, heterocyclic compounds derived from isatin, thiazole and phthalimide that have achieved promising in vitro anticancer activity have been tested in vivo and in clinical trials. OBJECTIVE This review focused on the compilation of promising data from thiazole, isatin, and phthalimide derivatives, reported in the literature between 2015 and 2022, with in vivo anticancer activity and clinical trials. METHODS A bibliographic search was carried out in the PUBMED, MEDLINE, ELSEVIER, and CAPES PERIODIC databases, selecting relevant works for each pharmacophoric group with in vivo antitumor activity in the last 6 years. RESULTS In our study, 68 articles that fit the scope were selected and critically analyzed. These articles were organized considering the type of antitumor activity and their year of publication. Some compounds reported here demonstrated potent antitumor activity against several tumor types. CONCLUSION This review allowed us to highlight works that reported promising structures for the treatment of various cancer types and also demonstrated that the privileged structures thiazole, isatin and phthalimide are important in the design of new syntheses and molecular optimization of compounds with antitumor activity.
Collapse
Affiliation(s)
- Aline Ferreira Pinto
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Janine Siqueira Nunes
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Eduardo Severino Martins
- Regulatory Affairs Advisory, Empresa Brasileira de Hemoderivados e Biotecnologia (HEMOBRAS), CEP 51021-410, Recife, PE, Brazil
| | - Amanda Calazans Leal
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Carla Cauanny Vieira Costa Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Anderson José Firmino Santos da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Daiane Santiago da Cruz Olímpio
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Elineide Tayse Noberto da Silva
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Thiers Araújo Campos
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| | - Ana Cristina Lima Leite
- Laboratory of Planning in Medicinal Chemistry, Department of Pharmaceutical Sciences, Center for Health Sciences, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
2
|
Gamal-Eldeen AM, Agwa HS, Zahran MAH, Raafat BM, El-Daly SM, Banjer HJ, Almehmadi MM, Alharthi A, Hawsawi NM, Althobaiti F, Abo-Zeid MAM. Phthalimide Analogs Enhance Genotoxicity of Cyclophosphamide and Inhibit Its Associated Hypoxia. Front Chem 2022; 10:890675. [PMID: 35518717 PMCID: PMC9065290 DOI: 10.3389/fchem.2022.890675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cyclophosphamide (CP) is a mutagen that is used in cancer chemotherapy, due to its genotoxicity and as an immunosuppressive agent. Thalidomide (TH) is another cancer chemotherapeutic drug. In this study, the cytogenotoxicity and hypoxia modulatory activities of two phthalimide analogs of TH have been evaluated with/without CP. Both analogs have increased CP-stimulated chromosomal aberrations than those induced by TH, including gaps, breaks/fragments, deletions, multiple aberrations, and tetraploidy. The analogs have elevated the cytotoxic effect of CP by inhibiting the mitotic activity, in which analog 2 showed higher mitosis inhibition. CP has induced binucleated and polynucleated bone marrow cells (BMCs), while micronuclei (MN) are absent. TH and analogs have elevated the CP-stimulated binucleated BMCs, while only analogs have increased the CP-induced polynucleated BMCs and inhibited the mononucleated BMCs. MN-BMCs were shown together with mononucleated, binucleated, and polynucleated cells in the CP group. Both analogs have elevated mononucleated and polynucleated MN-BMCs, whereas in presence of CP, TH and analogs have enhanced mononucleated and binucleated MN-BMCs. The analogs significantly induce DNA fragmentation in a comet assay, where analog 1 is the strongest inducer. The treatment of mice with CP has resulted in a high hypoxia status as indicated by high pimonidazole adducts and high HIF-1α and HIF-2α concentrations in lymphocytes. Analogs/CP-treated mice showed low pimonidazole adducts. Both analogs have inhibited HIF-1α concentration but not HIF-2α. Taken together, the study findings suggest that both analogs have a higher potential to induce CP-genotoxicity than TH and that both analogs inhibit CP-hypoxia via the HIF-1α-dependent mechanism, in which analog 1 is a more potent anti-hypoxic agent than analog 2. Analog 1 is suggested as an adjacent CP-complementary agent to induce CP-genotoxicity and to inhibit CP-associated hypoxia.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia.,High Altitude Research Center, Prince Sultan Medical Complex, Taif University, Taif, Saudi Arabia
| | - Hussein S Agwa
- Research & Development Department, Pharco B International Company for Pharmaceutical Industries, Borg El-Arab, Alexandria, Egypt
| | - Magdy A-H Zahran
- Chemistry Department, Faculty of Science, Menoufiya University, Menoufiya, Egypt
| | - Bassem M Raafat
- Radiological Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Sherien M El-Daly
- Medical Biochemistry Department, National Research Centre, Cairo, Egypt.,Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt
| | - Hamsa J Banjer
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mazen M Almehmadi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Afaf Alharthi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Nahed M Hawsawi
- Clinical Laboratory Sciences Department, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- High Altitude Research Center, Prince Sultan Medical Complex, Taif University, Taif, Saudi Arabia.,Biotechnology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Mona A M Abo-Zeid
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Cairo, Egypt.,Department of Cytology and Genetics, National Research Center, Cairo, Egypt
| |
Collapse
|
3
|
Synthesis and biological activities of new phthalimide and thiazolidine derivatives. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02821-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Almeida ML, Oliveira MC, Pitta IR, Pitta MG. Advances in Synthesis and Medicinal Applications of Compounds Derived from Phthalimide. Curr Org Synth 2020; 17:252-270. [DOI: 10.2174/1570179417666200325124712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/20/2022]
Abstract
Phthalimide derivatives have been presenting several promising biological activities in the literature,
such as anti-inflammatory, analgesic, antitumor, antimicrobial and anticonvulsant. The most well-known and
studied phthalimide derivative (isoindoline-1,3-dione) is thalidomide: this compound initially presented
important sedative effects, but it is now known that thalidomide has effectiveness against a wide variety of
diseases, including inflammation and cancer. This review approaches some of the recent and efficient chemical
synthesis pathways to obtain phthalimide analogues and also presents a summary of the main biological
activities of these derivatives found in the literature. Therefore, this review describes the chemical and
therapeutic aspects of phthalimide derivatives.
Collapse
Affiliation(s)
- Marcel L. Almeida
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Maria C.V.A. Oliveira
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Ivan R. Pitta
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| | - Marina G.R. Pitta
- Nucleus of Research in Therapeutical Innovation Suely Galdino (NUPIT SG), Bioscience Center, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
5
|
Synthesis, Characterization, and In Vivo Anti-Cancer Activity of New Metal Complexes Derived from Isatin- N(4)antipyrinethiosemicarbazone Ligand Against Ehrlich Ascites Carcinoma Cells. Molecules 2019; 24:molecules24183313. [PMID: 31514445 PMCID: PMC6766913 DOI: 10.3390/molecules24183313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
The current study aimed to synthesize new metal coordination complexes with potential biomedical applications. Metal complexes were prepared via the reaction of isatin-N(4)anti- pyrinethiosemicarbazone ligand 1 with Cu(II), Ni(II), Co(II), Zn(II), and Fe(III) ions. The obtained metal complexes 2-12 were characterized using elemental, spectral (1H-NMR, EPR, Mass, IR, UV-Vis) and thermal (TGA) techniques, as well as magnetic moment and molar conductance measurements. In addition, their geometries were studied using EPR and UV-Vis spectroscopy. To evaluate the in vivo anti-cancer activities of these complexes, the ligand 1 and its metal complexes 2, 7 and 9 were tested against solid tumors. The solid tumors were induced by subcutaneous (SC) injection of Ehrlich ascites carcinoma (EAC) cells in mice. The impact of the selected complexes on the reduction of tumor volume was determined. Also, the expression levels of vascular endothelial growth factor (VEGF) and cysteine aspartyl-specific protease-7 (caspase-7) in tumor and liver tissues of mice bearing EAC tumor were determined. Moreover, their effects on alanine transaminase (ALT), aspartate transaminase (AST), albumin, and glucose levels were measured. The results revealed that the tested compounds, especially complex 9, reduced tumor volume, inhibited the expression of VEGF, and induced the expression of caspase-7. Additionally, they restored the levels of ALT, AST, albumin, and glucose close to their normal levels. Taken together, our newly synthesized metal complexes are promising anti-cancer agents against solid tumors induced by EAC cells as supported by the inhibition of VEGF and induction of caspase-7.
Collapse
|
6
|
Othman IMM, Gad-Elkareem MAM, El-Naggar M, Nossier ES, Amr AEGE. Novel phthalimide based analogues: design, synthesis, biological evaluation, and molecular docking studies. J Enzyme Inhib Med Chem 2019; 34:1259-1270. [PMID: 31287341 PMCID: PMC6691772 DOI: 10.1080/14756366.2019.1637861] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pyrazolylphthalimide derivative 4 was synthesized and reacted with different reagents to afford the target compounds imidazopyrazoles 5-7, pyrazolopyrimidines 9, 12, 14 and pyrazolotriazines 16, 17 containing phthalimide moiety. The prepared compounds were established by different spectral data and elemental analyses. Additionally, all synthesized derivatives were screened for their antibacterial activity against four types of Gram + ve and Gram-ve strains, and for antifungal activity against two fungi micro-organisms by well diffusion method. Moreover, the antiproliferative activity was tested for all compounds against human liver (HepG-2) cell line in comparison with the reference vinblastine. Moreover, drug-likeness and toxicity risk parameters of the newly synthesized compounds were calculated using in silico studies. The data from structure-actvity relationship (SAR) analysis suggested that phthalimide derivative bearing 3-aminopyrazolone moiety, 4 illustrated the best antimicrobial and antitumor activities and might be considered as a lead for further optimization. To investigate the mechanism of the antimicrobial and anticancer activities, enzymatic assay and molecular docking studies were carried out on E. coli topoisomerase II DNA gyrase B and VEGFR-2 enzymes.
Collapse
Affiliation(s)
- Ismail M M Othman
- a Department of Chemistry, Faculty of Science , Al-Azhar University , Assiut , Egypt
| | - Mohamed A M Gad-Elkareem
- a Department of Chemistry, Faculty of Science , Al-Azhar University , Assiut , Egypt.,b Department of Chemistry, Faculty of Science and Arts of Baljurashi , Albaha University , Saudi Arabia
| | - Mohamed El-Naggar
- c Chemistry Department, Faculty of Sciences , University of Sharjah , Sharjah , UAE
| | - Eman S Nossier
- d Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Girls) , Al-Azhar University , Cairo , Egypt
| | - Abd El-Galil E Amr
- e Pharmaceutical Chemistry Department, Drug Exploration & Development Chair (DEDC) , College of Pharmacy, King Saud University , Riyadh , Saudi Arabia.,f Applied Organic Chemistry Department , National Research Centre , Giza , Egypt
| |
Collapse
|