1
|
Maniraguha V, Hong JS, Yu M, Oketch EO, Yi YJ, Yun H, Jayasena DD, Heo JM. Feeding dietary non-starch polysaccharides supplemented with xylanase could improve the performance of broilers. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:999-1009. [PMID: 39398309 PMCID: PMC11466742 DOI: 10.5187/jast.2023.e114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/15/2024]
Abstract
The impact of dietary non-starch polysaccharides (NSP) on performance and carcass traits of broilers fed wheat-bran substituted into corn-soybean meal-based diets supplemented with xylanase was investigated. A total of 280 (7-day-old) Ross 308 broilers were randomly allotted to one of five dietary treatments with 8 replicates, 7 chicks per pen. Treatments were; i) CON: Control diet, ii) CON-X (CON + 3,000 U/kg xylanase), iii) L-X: low NSP (2% wheat bran in CON + 3,000 U/kg xylanase), iv) M-X: medium NSP (4% wheat bran in CON + 3,000 U/kg xylanase), v) H-X: higher NSP (8% wheat bran in CON+ 3,000 U/kg xylanase). Birds fed the H-X diet increased (p < 0.05) daily gains, and average daily feed intake and had marginally improved body weights (p = 0.074) on day 35. Relatively, the H-X diet tended to increase the average daily gains (p = 0.053; p = 0.073) of birds during the grower phase (d 24-35) and the entire experimental period (d 8-35), respectively. Moreover, there were no significant differences among treatments in the feed conversion ratio of birds throughout the entire experiment period. Birds fed diets CON-X, L-X, and M-X had improved (p < 0.05) the ileal digestibility of energy on d 24 and 35 compared to those fed the H-X diet. Furthermore, birds fed diet CON-X improved (p < 0.05) N digestibility on d 24. Improved carcass moisture content and lowered crude fat of leg meat (p < 0.05) were noted in birds fed the diet M-X and H-X on d 35, respectively. The intestinal viscosity was reduced (p < 0.05) in xylanase-supplemented treatments CON-X, L-X, M-X, and H-X diets when compared to CON. Our results suggest that supplementing 3,000 U/kg xylanase in a higher NSP (8% wheat bran substituted level) diet could improve the intestinal viscosity and growth performance of broilers.
Collapse
Affiliation(s)
- Venuste Maniraguha
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jun Seon Hong
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Myunghwan Yu
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Elijah Ogola Oketch
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Young-Joo Yi
- Department of Agricultural Education,
College of Education, Suncheon National University, Suncheon
57922, Korea
| | | | | | - Jung Min Heo
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
2
|
Wang P, Pei X, Zhou W, Zhao Y, Gu P, Li Y, Gao J. Research and application progress of microbial β-mannanases: a mini-review. World J Microbiol Biotechnol 2024; 40:169. [PMID: 38630389 DOI: 10.1007/s11274-024-03985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Mannan is a predominant constituent of cork hemicellulose and is widely distributed in various plant tissues. β-Mannanase is the principal mannan-degrading enzyme, which breaks down the β-1,4-linked mannosidic bonds in mannans in an endo-acting manner. Microorganisms are a valuable source of β-mannanase, which exhibits catalytic activity in a wide range of pH and temperature, making it highly versatile and applicable in pharmaceuticals, feed, paper pulping, biorefinery, and other industries. Here, the origin, classification, enzymatic properties, molecular modification, immobilization, and practical applications of microbial β-mannanases are reviewed, the future research directions for microbial β-mannanases are also outlined.
Collapse
Affiliation(s)
- Ping Wang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Xiaohui Pei
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Shandong First Medical University, Taian, 271000, PR China
| | - Weiqiang Zhou
- Weili Biotechnology (Shandong) Co., Ltd, Taian, 271400, PR China
| | - Yue Zhao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China
| | - Yumei Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
| | - Juan Gao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, PR China.
- Shandong Engineering Research Center of Key Technologies for High-Value and High-Efficiency Full Industry Chain of Lonicera japonica, Linyi, 273399, PR China.
| |
Collapse
|
3
|
Zhang X, Xu H, Gong L, Wang J, Fu J, Lv Z, Zhou L, Li X, Liu Q, Xia P, Guo Y. Mannanase improves the growth performance of broilers by alleviating inflammation of the intestinal epithelium and improving intestinal microbiota. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:376-394. [PMID: 38371477 PMCID: PMC10874740 DOI: 10.1016/j.aninu.2023.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 02/20/2024]
Abstract
This experiment aimed to discuss and reveal the effect and mechanism of mannanase on intestinal inflammation in broilers triggered by a soybean meal diet. In this experiment, 384 Arbor Acres broilers at 1 d old were randomly divided into 3 treatment groups. The broilers were fed a corn-soybean meal basal diet, a low-energy diet (metabolizable energy reduced by 50 kcal/kg), and a low-energy diet supplemented with 100 mg/kg mannanase for 42 d. The low-energy diet increased feed conversion ratio from 0 to 42 d, reduced ileal villus height and villus height-to-crypt depth ratio and upregulated the expression of nuclear factor kappa B (NF-κB) in the ileum (P < 0.05). It also reduced cecal short-chain fatty acids (SCFA), such as acetic acid (P < 0.05). Compared with low-energy diets, the addition of mannanase increased body weight at 42 d, promoted the digestibility of nutrients, and maintained the morphology and integrity of the intestinal epithelium of broilers (P < 0.05). In addition, mannanase upregulated the expression of claudin-1 (CLDN1) and zonula occludens-1 (ZO-1) in the jejunum at 21 d, downregulated the expression of ileal NF-κB, and increased the content of isobutyric acid in the cecum of broilers (P < 0.05). The results for the ileal microbiota showed that a low-energy diet led to a decrease in the relative abundance of Lactobacillus reuteri in the ileum of broilers. The addition of mannanase increased the relative abundance of Lactobacillus-KC45b and Lactobacillus johnsonii in broilers. Furthermore, a low-energy diet reduced the relative abundance of Butyricicoccus in the intestine of broilers and inhibited oxidative phosphorylation and phosphoinositol metabolism. Mannanase increased the relative abundance of Odoribacter, promoted energy metabolism and N-glycan biosynthesis, and increased the activities of GH3 and GH18. It is concluded that mannanase could improve the growth performance of broilers by reducing the expression of NF-κB in the ileum, increasing the production of SCFA in the cecum, suppressing intestinal inflammation, balancing the intestinal microbiota, reducing damage to the intestinal barrier, and improving the efficiency of nutrient utilization to alleviate the adverse effects caused by the decrease in dietary energy level.
Collapse
Affiliation(s)
- Xiaodan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Huiping Xu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lu Gong
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jiao Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianyang Fu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liangjuan Zhou
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Xuejun Li
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Qiong Liu
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Pingyu Xia
- Beijing Strowin Biotechnology Co., Ltd., Beijing, 100094, China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Kwak MJ, Ha DJ, Park MY, Eor JY, Whang KY, Kim Y. Comparison study between single enzyme and multienzyme complex in distiller's dred grains with soluble supplemented diet in broiler chicken. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:398-411. [PMID: 38628689 PMCID: PMC11016744 DOI: 10.5187/jast.2023.e90] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 04/19/2024]
Abstract
Upregulation of the nutritional value of feed is the major target of various studies in the livestock industry, and dietary enzyme supplementation could aid in digesting the nondegrading nutrients of grains in feed ingredients. Dried distillers' grains with solubles (DDGS) is a byproduct of the fermentation process in the beverage industry and can be used as a large supply source of fiber in feed. Therefore, we conducted an experiment with male broiler chickens to investigate the effect of various types of enzymes on DDGS and compare the efficacy of single enzyme and multienzyme complexes on growth performance and gut environments in broiler chickens. We used 420 1-day-old broiler chickens (Ross 308), and they were allotted into 4 dietary treatments with seven replications (CON, corn-soybean meal [SBM] diet; NC, DDGS supplemented diet; SE, 0.05 % of mannanase supplemented DDGS-based diet; MC, 0.10% of multienzyme complex (mannanase and xylanase, glucanase) supplemented DDGS-based diet. The dietary exogenous enzyme in the DDGS-supplemented diet could improve growth performance as much as the growth of the control group, and digestibility of dry matter, crude protein, and gross energy were significantly increased by enzyme addition in groups of chicks fed DDGS-supplementation diet. Moreover, the populations of pathogenic bacteria, coliforms, and Bacteroidetes were significantly decreased by enzyme supplementation, which might lead to improved gut mucus-secreting cells and inflammatory cytokines in the jejunum. Collectively, dietary single enzyme and multienzyme complexes could improve gut environments, including intestinal immune responses and gut microbial population, and lead to improvement of growth performance in broiler chickens.
Collapse
Affiliation(s)
- Min-Jin Kwak
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Dong-Jin Ha
- Division of Biotechnology, College of Life
Science and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Min Young Park
- Department of Basic Science and
Craniofacial Biology, New York University College of
Dentistry, New York 10012, USA
| | - Ju Young Eor
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Kwang-Youn Whang
- Division of Biotechnology, College of Life
Science and Biotechnology, Korea University, Seoul 02841,
Korea
| | - Younghoon Kim
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
5
|
Plouhinec L, Neugnot V, Lafond M, Berrin JG. Carbohydrate-active enzymes in animal feed. Biotechnol Adv 2023; 65:108145. [PMID: 37030553 DOI: 10.1016/j.biotechadv.2023.108145] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/10/2023]
Abstract
Considering an ever-growing global population, which hit 8 billion people in the fall of 2022, it is essential to find solutions to avoid the competition between human food and animal feed for croplands. Agricultural co-products have become important components of the circular economy with their use in animal feed. Their implementation was made possible by the addition of exogenous enzymes in the diet, especially carbohydrate-active enzymes (CAZymes). In this review, we describe the diversity and versatility of microbial CAZymes targeting non-starch polysaccharides to improve the nutritional potential of diets containing cereals and protein meals. We focused our attention on cellulases, hemicellulases, pectinases which were often found to be crucial in vivo. We also highlight the performance and health benefits brought by the exogenous addition of enzymatic cocktails containing CAZymes in the diets of monogastric animals. Taking the example of the well-studied commercial cocktail Rovabio™, we discuss the evolution, constraints and future challenges faced by feed enzymes suppliers. We hope that this review will promote the use and development of enzyme solutions for industries to sustainably feed humans in the future.
Collapse
Affiliation(s)
- Lauriane Plouhinec
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France.
| | - Virginie Neugnot
- ADISSEO, 135 Avenue de Rangueil, INSA Toulouse, Hall Gilbert Durand, 31400 Toulouse, France
| | - Mickael Lafond
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix-Marseille Univ., UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
6
|
Morgan N, Bhuiyan M, Wallace A, Hopcroft R. Comparing a single dose of xylanase to a double dose or cocktail of non-starch polysaccharide-degrading enzymes in broiler chicken diets. JOURNAL OF APPLIED ANIMAL NUTRITION 2022. [DOI: 10.3920/jaan2022.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This study compared supplementation with a single dose of xylanase to a double dose of xylanase or a non-starch polysaccharide (NSP) degrading enzyme cocktail (NSP-ase cocktail) on productive performance, nutrient utilisation and the gastrointestinal environment in broilers fed commercial diets. Cobb 500 broilers (n=1,080) were fed 12 dietary treatments; four Australian commercial diets (based on wheat-barley, wheat-maize, wheat-sorghum or wheat only) with three different enzyme treatments (single dose of xylanase (16,000 BXU/kg), double dose of xylanase (32,000 BXU/kg) or NSP-ase cocktail (xylanase, β-glucanase, cellulase, pectinase, mannanase, galactanase, arabinofuranosidase). There were 108 pens, nine replicates per dietary treatment, with 10 birds per pen. Performance (total pen body weight, feed intake and feed conversion ratio corrected for mortality) was determined at d 0-35. On d 35, one male and one female were weighed individually and used to determine breast meat, thigh and drumstick weight, dry matter (DM) contents from the gizzard, jejunum and ileum, ileal protein, energy, starch and dry matter digestibility, ileal viscosity and xylo-oligosaccharide (XOS) concentration, caecal microbiota and short chain fatty acid (SCFA) composition. The double dose of xylanase and NSP-ase cocktail had no effect on bird performance, meat yield, ileal viscosity, ileal starch, energy or DM digestibility or digesta DM content. The double xylanase dose and NSP-ase cocktail increased protein digestibility in birds fed the wheat-sorghum based diet (P=0.041) and increased caecal concentration of butyric acid in birds fed the wheat-maize based diet (P=0.040), and propionic, valeric and lactic acid and Bifidobacteria and Enterobacteria spp. in birds fed the wheat-based diet (P<0.05). The double xylanase dose increased XOS production, particularly in birds fed the wheat-barley based diets (P<0.05). The lack of performance effects observed when feeding the double xylanase dose or NSP-ase cocktail suggested that the current recommended xylanase dose (16,000 BXU/kg) is sufficient.
Collapse
Affiliation(s)
- N. Morgan
- Curtin University, School of Molecular and Life Sciences, Bentley, Western Australia, 6102, Australia
- University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales, 2350, Australia
| | - M.M. Bhuiyan
- University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales, 2350, Australia
| | - A. Wallace
- University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales, 2350, Australia
| | - R. Hopcroft
- Inghams Enterprises Pty Ltd, North Ryde, New South Wales, 1670, Australia
| |
Collapse
|
7
|
Morgan N, Bhuiyan MM, Hopcroft R. Non-starch polysaccharide degradation in the gastrointestinal tract of broiler chickens fed commercial-type diets supplemented with either a single dose of xylanase, a double dose of xylanase, or a cocktail of non-starch polysaccharide-degrading enzymes. Poult Sci 2022; 101:101846. [PMID: 35462208 PMCID: PMC9048112 DOI: 10.1016/j.psj.2022.101846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to examine non-starch polysaccharide (NSP) degradation in the gastrointestinal tract of chickens fed a range of commercial-type diets supplemented with a commercial dose of xylanase, a double dose of xylanase or a cocktail of NSP - degrading enzymes. Cobb 500 broilers (n = 1,080) were fed 12 dietary treatments; 4 diets with differing primary grain sources (barley, corn, sorghum, and wheat) and three different enzyme treatments (commercial recommended dose of xylanase (16,000 BXU/kg), a double dose of xylanase (32,000 BXU/kg) or an NSP-degrading enzyme cocktail (xylanase, β-glucanase, cellulase, pectinase, mannanase, galactanase, and arabinofuranosidase at recommended commercial levels). There were 108 pens, approximately 10 birds per pen, 9 replicates per dietary treatment. The diets were fed as 3 phases, starter (d 0-12), grower (d 12-23), and finisher (d 23-35). On bird age d 12, 23, and 35, performance (total pen body weight, feed intake, and feed conversion ratio corrected for mortality [cFCR]), litter and excreta dry matter content, and ileal and total tract soluble and insoluble NSP degradability and free oligosaccharide digestibility was determined. On d 35, the quantity of NSP in the gizzard, jejunum, ileum and excreta was determined. Results from this study showed that the double xylanase dose and NSP-ase cocktail had positive impacts on starter phase performance in birds fed the corn- and wheat-based diets. In the grower phase in birds fed the barley-based diet, these enzyme treatments improved cFCR and increased litter dry matter content. The NSP-ase cocktail had a negative impact on finisher phase cFCR in birds fed the sorghum-based diet. The double xylanase dose induced a positive impact on NSP degradability and free oligosaccharide digestibility. In conclusion, there appears to be advantages to feeding broilers a double xylanase dose, but lack of consistency when using an NSP-ase cocktail containing many enzymes.
Collapse
Affiliation(s)
- N Morgan
- Curtin University, School of Molecular and Life Sciences, Bentley, Western Australia 6102, Australia; University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales 2350, Australia.
| | - M M Bhuiyan
- University of New England, School of Rural and Environmental Sciences, Armidale, New South Wales 2350, Australia
| | - R Hopcroft
- Inghams Enterprises Pty Ltd, North Ryde, New South Wales 1670, Australia
| |
Collapse
|
8
|
Epova E, Petrova S, Trubnikova E, Danilova M. Epiphytic bet-mannanase producing bacterial strains. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213700125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dry remains of the herbal species of the plantain (Plantago major), the wormwood (Artemisia vulgaris) and the reed grass (Calamagrostis acutiflora) were used as a natural source for isolation of β- mannanase producing strains. They were isolated by using the carob gum as a single source of carbon and energy. Each chosen plant species was found to be colonized with a single dominant epiphytic group of microorganism, although the plants had been collected in the same location. Bacillus circulans was only found in P. major, Bacillus subtilis on A. vulgaris, whereas Pantoea sp. was found in C. acutiflora. Identification of the taxonomy affiliation of the isolated β-mannanase producers allowed using the formerly proposed primers for PCR cloning of β-mannanase genes previously occurred in the respective bacterial species. This approach let us cloning 330 bp fragment of β-mannanase genes from B. circulans and B. subtilis and 1000 bp fragment of β-mannanase gene from Pantoea sp. Testing the enzymatic activity of the isolated strains by staining the carob gum hydrolysis zones on the plates with Congo Red was carried out. As a result, the maximum activity was found in Pantoea sp.
Collapse
|