1
|
Li T, Kim IH. Effects of Dietary Supplementation of Quillaja Saponin or Phytase on the Growth Performance, Nutrient Digestibility, Faecal Gas Emissions, and Carcass Grade in Growing-Finishing Pigs. J Anim Physiol Anim Nutr (Berl) 2024. [PMID: 39264744 DOI: 10.1111/jpn.14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
This experiment aimed to evaluate the effects of low doses of Quillaja saponin (QS) or phytase (PHY) on growth performance, nutrient digestibility, faecal gas emissions, and carcass grade in growing-finishing pigs. A total of 72 pigs (Landrace × Yorkshire × Duroc), each weighing 25.82 ± 1.68 kg, were selected and randomly assigned to three treatment groups. Each group had six replicates, with four pigs per pen, and the allocation was based on the four initial body weight and sex of the pigs. They were randomly divided into the following three diet groups: the basal diet as a control (CON) group, the basal diet + 0.02% PHY; and the basal diet + 0.01% QS. The experiment period lasted for 110 days. The results of adding 0.01% QS to the basal diet of pigs show that it can significantly increase the body weight (BW) of growing-finishing pigs on the 110th day (p < 0.05). QS can significantly increase the average daily weight gain (ADG) on Days 80-110 of the experiment (p < 0.05). QS can significantly increase the total average daily weight gain (TADG) of growing-finishing pigs during the entire experimental period (p < 0.05) and has a tendency to improve the average daily feed intake and feed conversion rate during the entire experimental period. However, QS has no significant effect on pig nutrient digestibility and carcass grade. In addition, we also found that QS has a tendency to reduce carbon dioxide emissions. However, adding 0.02% PHY to the basal diet of growing-finishing pigs can only increase the TADG during the entire experimental period. Throughout the experiment, adding PHY to the diet had no significant impact on the nutrient digestibility, faecal gas emissions, and carcass grade of growing-finishing pigs. In summary, adding QS to feed can significantly improve the growth performance of growing-finishing pigs, and has a tendency to improve faecal gas emissions. PHY can only improve the growth performance of growing-finishing pigs.
Collapse
Affiliation(s)
- Tianxiang Li
- Department of Animal Biotechnology, Dankook University, Cheonan, Korea
| | - In Ho Kim
- Department of Animal Biotechnology, Dankook University, Cheonan, Korea
| |
Collapse
|
2
|
Serradell A, Montero D, Terova G, Rimoldi S, Makol A, Acosta F, Bajek A, Haffray P, Allal F, Torrecillas S. Functional Additives in a Selected European Sea Bass ( Dicentrarchus labrax) Genotype: Effects on the Stress Response and Gill Antioxidant Response to Hydrogen Peroxide (H 2O 2) Treatment. Animals (Basel) 2023; 13:2265. [PMID: 37508043 PMCID: PMC10376812 DOI: 10.3390/ani13142265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Functional ingredients have profiled as suitable candidates for reinforcing the fish antioxidant response and stress tolerance. In addition, selective breeding strategies have also demonstrated a correlation between fish growth performance and susceptibility to stressful culture conditions as a key component in species domestication processes. The aim of the present study is to evaluate the ability of a selected high-growth genotype of 300 days post-hatch European sea bass (Dicentrarchus labrax) juveniles to use different functional additives as endogenous antioxidant capacity and stress resistance boosters when supplemented in low fish meal (FM) and fish oil (FO) diets. Three isoenergetic and isonitrogenous diets (10% FM/6% FO) were supplemented with 200 ppm of a blend of garlic and Labiatae plant oils (PHYTO0.02), 1000 ppm of a mixture of citrus flavonoids and Asteraceae and Labiatae plant essential oils (PHYTO0.1) or 5000 ppm of galactomannan-oligosaccharides (GMOS0.5). A reference diet was void of supplementation. The fish were fed the experimental diets for 72 days and subjected to a H2O2 exposure oxidative stress challenge. The fish stress response was evaluated through measuring the circulating plasma cortisol levels and the fish gill antioxidant response by the relative gene expression analysis of nfΚβ2, il-1b, hif-1a, nd5, cyb, cox, sod, cat, gpx, tnf-1α and caspase 9. After the oxidative stress challenge, the genotype origin determined the capacity of the recovery of basal cortisol levels after an acute stress response, presenting GS fish with a better pattern of recovery. All functional diets induced a significant upregulation of cat gill gene expression levels compared to fish fed the control diet, regardless of the fish genotype. Altogether, suggesting an increased capacity of the growth selected European sea bass genotype to cope with the potential negative side-effects associated to an H2O2 bath exposure.
Collapse
Affiliation(s)
- Antonio Serradell
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Daniel Montero
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Genciana Terova
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Simona Rimoldi
- Department of Biotechnology and Life Sciences, University of Insubria, Via J.H. Dunant, 3, 21100 Varese, Italy
| | - Alex Makol
- Global Solution Aquaculture Unit, Delacon Biotechnik Gmbh, 4209 Engerwitzdorf, Austria
| | - Félix Acosta
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| | - Aline Bajek
- Ecloserie Marine de Graveline Ichtus, Route des Enrochements, 59820 Gravelines, France
| | - Pierrick Haffray
- SYSAAF, French Association of Poultry and Aquaculture Breeders, Campus de Beaulieu, 35042 Rennes, France
| | - François Allal
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, 34250 Palavas-les-Flots, France
| | - Silvia Torrecillas
- Grupo de Investigación en Acuicultura (GIA), IU-ECOAQUA, Universidad de las Palmas de Gran Canaria, Crta. Taliarte s/n, 35214 Telde, Las Palmas, Spain
| |
Collapse
|