1
|
Zhang Y, Song Y, Zhang W, Xiao T, Peng H. Effect of NLR family pyrin domain containing 9 gene polymorphism on litter size in large white pigs. Anim Biotechnol 2023; 34:4547-4552. [PMID: 36651576 DOI: 10.1080/10495398.2023.2166840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
NLR family pyrin domain containing 9 (NLRP9) is a mammalian reproduction-related gene. In this study, we researched the associations between polymorphisms located in the coding sequence (CDS) of the NLRP9 gene, and both the total number of piglets born per litter (TNB) and the number of piglets born alive per litter (NBA) in Canada Large White pigs (CLW). We detected a single nucleotide polymorphism (SNP) within exon 3 (g.10910C > T). The allele frequencies at the NLRP9 locus were 0.474 for the C allele and 0.526 for the T allele. Three genotypes, CC, CT, and TT, occurred with frequencies of 0.216, 0.515, and 0.269, respectively. Sows with the CC genotype had the largest TNB and NBA, sows with TT had the smallest, and those with CT were in-between. This difference was statistically significant (p < 0.05). Furthermore, CC females grew faster than CT or TT females, and there was a significant relationship between NLRP9 polymorphism and the average daily gain (p < 0.05). Here, we provide the first evidence for a novel SNP in NLRP9 associated with litter size in CLW sows, which could be used as a genetic marker to improve litter size in pig breeding and production.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yongqi Song
- Ruzhou Vocational and Technical College, Ruzhou, Henan, China
| | - Wenchang Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tianfang Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Hui Peng
- College of Animal Science and Technology, Hainan University, Haikou, Hainan, China
| |
Collapse
|
2
|
A 14-bp functional deletion within the CMTM2 gene is significantly associated with litter size in goat. Theriogenology 2019; 139:49-57. [DOI: 10.1016/j.theriogenology.2019.07.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/08/2023]
|
3
|
Detection of coding sequence, mRNA expression and three insertions/deletions (indels) of KDM6A gene in male pig. Theriogenology 2019; 133:10-21. [DOI: 10.1016/j.theriogenology.2019.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/31/2019] [Accepted: 04/18/2019] [Indexed: 01/20/2023]
|
4
|
Zhou T, Wei H, Li D, Yang W, Cui Y, Gao J, Yu T, Lv X, Pan C. A novel missense mutation within the domain of lysine demethylase 4D (KDM4D) gene is strongly associated with testis morphology traits in pigs. Anim Biotechnol 2019; 31:52-58. [DOI: 10.1080/10495398.2018.1531880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Tong Zhou
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Hancheng Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
- National Key Laboratory of Biotherapy, Sichuan University, Chengdu, P.R. China
| | - Dairui Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Wenjing Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Yang Cui
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Jiayang Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Ting Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| | - Xiaoyan Lv
- National Swine Foundation Seed Farm of Ankang Yangchen Modern Agriculture Group Co. Ltd, Ankang, P.R. China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
5
|
Zhang Y, Cui Y, Zhang X, Wang Y, Gao J, Yu T, Lv X, Pan C. Pig StAR: mRNA expression and alternative splicing in testis and Leydig cells, and association analyses with testicular morphology traits. Theriogenology 2018; 118:46-56. [DOI: 10.1016/j.theriogenology.2018.05.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/06/2018] [Accepted: 05/25/2018] [Indexed: 01/09/2023]
|
6
|
Yan H, Jiang E, Zhu H, Hu L, Liu J, Qu L. The novel 22 bp insertion mutation in a promoter region of the <i>PITX2</i> gene is associated with litter size and growth traits in goats. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-329-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. The paired-like homeodomain 2 (PITX2) gene plays a critical role in
regulating development, reproduction, and growth traits in ruminants. Hence,
the objective of this study was to explore the polymorphisms of this gene and
to evaluate their associations with quantitative traits. Herein, a novel
insertion in the promoter region of the PITX2 gene was reported in
Shaanbei white cashmere (SBWC) goats (n=1012). The genotype distributions
between mothers of single-kid and multi-kid groups within SBWC goats were
significantly different (P<0.01), implying that this indel mutation might
affect the litter size. Furthermore, association analysis found that this
indel mutation was significantly associated with litter size (P=0.001).
Individuals with genotype DD had a significantly smaller litter size than
those with other genotypes (P<0.01). Besides, this indel was significantly
associated with the body length (P=0.042) and the chest width (P=0.031). Especially, the individuals with genotype DD had a significantly
lower body length than those with genotype II (P<0.05), which was
consistent with the trend in litter size. These findings suggested that the
new 22 bp indel mutation within the PITX2 gene is significantly
associated with litter size and growth traits; this can be utilized as a
functional molecular marker in goat breeding.
Collapse
|
7
|
Cui Y, Zhang Y, Wei Z, Gao J, Yu T, Chen R, Lv X, Pan C. Pig KDM5B: mRNA expression profiles of different tissues and testicular cells and association analyses with testicular morphology traits. Gene 2018; 650:27-33. [DOI: 10.1016/j.gene.2018.01.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/18/2018] [Accepted: 01/29/2018] [Indexed: 12/31/2022]
|
8
|
Zhao H, Wu M, Wang S, Yu X, Li Z, Dang R, Sun X. Identification of a novel 24 bp insertion–deletion (indel) of the androgen receptor gene and its association with growth traits in four indigenous cattle breeds. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-71-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. During the past decades, insertions and deletions (indels) have become
increasingly popular in animal breeding for understanding the relationship
between genotypes and phenotypes. The androgen receptor (AR) plays the
vital role of a bridge on the function of the androgen and has sexual size
dimorphism. For this reason, the objective of this study was to explore the
novel indel variants within the cattle AR gene and to detect their
effects on growth traits in four breeds of Chinese yellow cattle. Herein, we
first confirmed a novel 24 bp indel (AC_000187.1g.4187270-4187293delAATTTATTGGGAGATTATTGAATT) within the intron of
the cattle AR gene. This is consistent with the results predicted
from the NCBI SNP database. The distribution of the indel genotypes of four
Chinese yellow cattle were significantly different from each other
(P < 0.01). After significant correlation analysis, many remarkable
phenotypic differences among the three genotypes were found (P < 0.05).
In conclusion, a novel 24 bp indel within the AR gene
significantly affected growth traits, suggesting that this indel may be a
useful DNA marker for the elimination or selection of excellent individuals for
cattle breeding.
Collapse
|
9
|
Zak LJ, Gaustad AH, Bolarin A, Broekhuijse MLWJ, Walling GA, Knol EF. Genetic control of complex traits, with a focus on reproduction in pigs. Mol Reprod Dev 2017; 84:1004-1011. [DOI: 10.1002/mrd.22875] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/07/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Louisa J. Zak
- Topigs Norsvin Research Center; Beuningen The Netherlands
| | | | | | | | - Grant A. Walling
- JSR Genetics; Southburn; Driffield East Yorkshire United Kingdom
| | - Egbert F. Knol
- Topigs Norsvin Research Center; Beuningen The Netherlands
| |
Collapse
|
10
|
Liu L, Yu S, Chen R, Lv X, Pan C. A novel synonymous SNP (A47A) of the <i>TMEM95</i> gene is significantly associated with the reproductive traits related to testis in male piglets. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-235-2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Transmembrane protein 95 (TMEM95) is located on the acrosomal membrane of the sperm head involved in the acrosome reaction; thus, it is regarded as affecting spermatogenesis and reproduction traits. The aim of this study was to explore the novel single nucleotide polymorphisms (SNPs) within the pig TMEM95 gene as well as to evaluate their associations with the testicular sizes in male Landrace (LD) and Large White (LW) breeds. After pool sequencing and bioinformatics analysis, only one novel coding SNP was found in exon 1, namely NC_010454.3: g.341T > C, resulting in a synonymous mutation (A47A). This SNP could be genotyped using the StuI polymerase chain reaction–restriction fragment length polymorphism (PCR-RFLP) assay. The minor allelic frequencies (MAFs) were 0.259 and 0.480 in the LD and LW breeds. Their polymorphism information content (PIC) values were 0.310 and 0.375. The LW population was at the Hardy–Weinberg equilibrium (HWE) (p > 0.05), whereas the LD population was not (p < 0.05). Association analyses demonstrated that a significant relationship was found between this A47A polymorphism and testis weight at 40 days of age in the LW population (p = 0.047), and the heterozygote individuals showed lower testis weight than those with other genotypes. Moreover, this SNP was significantly associated with three testis measurement traits at 15 days of age in the LW population (p < 0.05); the individuals with genotypes TT and TC showed consistently superior testis measurement traits than those with genotype CC. These findings demonstrate that the A47A polymorphism had a significant effect on testis measurement traits, suggesting that the TMEM95 gene could be a candidate gene associated with reproductive traits. These results could contribute to breeding and genetics programs in the pig industry via DNA marker-assisted selection (MAS).
Collapse
|
11
|
Zhao H, He S, Zhu Y, Cao X, Luo R, Cai Y, Xu H, Sun X. A novel 29 bp insertion/deletion (indel) variant of the <i>LHX3</i> gene and its influence on growth traits in four sheep breeds of various fecundity. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-79-2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract. Belonging to the same LIM homeobox (LHX) family, LHX3 and LHX4 are key transcription factors in animal growth and reproduction. Insertion/deletion (indel) is a relatively simple and effective DNA marker. Therefore, four sheep breeds of various fecundity were used to explore the novel indel variants within the sheep LHX3 and LHX4 gene, as well as to evaluate their effects on growth traits. Herein, only one novel 29 bp indel (NC_019460.2:g.3107494-3107522delGGCCTGGACTGTGATGGGCACCCTCCGGG) within the sheep LHX3 gene was found, and three genotypes were detected. Interestingly, the increasing trends of II (insertion/insertion) genotype frequency and I allelic frequency were the same as the growth of the fertility character. Genotypic frequency and allelic frequency distributions were significantly different between the high-fecundity breeds (HS, STHS and LFTS) and low-fecundity breed (TS) based on a χ2 test (P < 0.05). Association analyses showed that body length was significantly different in female TS and STHS and that chest width was significantly different for the female TS and male STHS (P < 0.05). These findings suggested that the 29 bp indel could extend the spectrum of genetic variations of the LHX3 gene in sheep and provide a valuable theoretical basis for the marker-assisted selection (MAS) in sheep breeding and genetics.
Collapse
|
12
|
Ren F, Yu S, Chen R, Lv X, Pan C. Identification of a novel 12-bp insertion/deletion (indel) of iPS-related Oct4 gene and its association with reproductive traits in male piglets. Anim Reprod Sci 2017; 178:55-60. [PMID: 28139300 DOI: 10.1016/j.anireprosci.2017.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/20/2017] [Accepted: 01/22/2017] [Indexed: 01/01/2023]
Abstract
As a key factor of cellular reprogramming, Oct4 is one of vital transcription factors for induced pluripotent stem cells (iPSCs). Loss of its function or deletion causes apoptosis in primordial germ cells (PGCs), which affect reproductive traits in mammals. In this study, a novel 12-bp insertion/deletion (indel) polymorphism (NC_010449:g.2759-2760insGGTTTTTGTCTA) within the Oct4 gene was identified in 442 pigs of Large White (LW) and Landrace (LD) breeds, showing three genotypes designated as II, ID, and DD. The frequencies of allele "I" in LW and LD pigs were 0.587 and 0.648, respectively. The male piglets with homozygous II or DD genotypes of Oct4 gene exhibited better reproductive traits than those with heterozygous ID genotype. Moreover, there were two significant associations between this 12-bp indel polymorphism and testis long circumference (TLC) (P=0.005) and testis short girth (TSG) (P=0.003) as well as 15-day testis weight (TW) (P=0.013) in the LW male piglets. These findings suggest that the 12-bp indel polymorphism of the Oct4 gene might be a potential DNA marker for selecting preferred individuals in relation to reproductive traits in pig marker-assisted selection (MAS) breeding, which could contribute to the breeding and genetics in male piglets.
Collapse
Affiliation(s)
- Fa Ren
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Shuai Yu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Rui Chen
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China.
| | - Xiaoyan Lv
- National Swine Foundation Seed Farm of Ankang Yangchen Modern Agriculture Group Co. Ltd, Ankang, 725000 PR China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
13
|
Zhang M, Pan C, Lin Q, Hu S, Dang R, Lei C, Chen H, Lan X. Exploration of the exonic variations of the iPSC-related <i>Nanog</i> gene and their effects on phenotypic traits in cattle. Arch Anim Breed 2016. [DOI: 10.5194/aab-59-351-2016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Abstract. Nanog is an important pluripotent transcription regulator transforming somatic cells to induced pluripotent stem cells (iPSCs), and its overexpression leads to a high expression of the growth and differentiation factor 3 (GDF3), which affects animal growth traits. Therefore, the aim of this study was to explore the genetic variations within the Nanog gene and their effects on phenotypic traits in cattle. Six novel exonic single nucleotide polymorphisms (SNPs) were found in six cattle breeds. Seven haplotypes were analyzed: TCAACC (0.260), TCAATA (0.039), TCATCC (0.019), TCGACC (0.506), TCGATA (0.137), TCGTCC (0.036), and CTGATA (0.003). There were strong linkage disequilibriums of SNP1 and SNP2 in Jiaxian cattle as well as of SNP5 and SNP6 in both Jiaxian cattle and Nanyang cattle. Moreover, SNP3, SNP4, and SNP5 were associated with phenotypes. The individuals with GG genotype at the SNP3 locus or AA genotype at the SNP4 locus showed better body slanting length and chest circumference or body height and hucklebone width in Nanyang cattle. The superiority of the SNP5-C allele regarding body height and cannon circumference was observed in Jiaxian cattle. The combination of SNP3 and SNP4 (GG–AA) had positive effects on body height, body slanting length, and chest circumference. These findings may indicate that Nanog, as a regulator of bovine growth traits, could be a candidate gene for marker-assisted selection (MAS) in breeding and genetics in cattle.
Collapse
|