1
|
Costermans NGJ, Soede NM, van Tricht F, Blokland M, Kemp B, Keijer J, Teerds KJ. Follicular fluid steroid profile in sows: relationship to follicle size and oocyte quality†. Biol Reprod 2021; 102:740-749. [PMID: 31786607 PMCID: PMC7068110 DOI: 10.1093/biolre/ioz217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/19/2022] Open
Abstract
Identification of reliable characteristics of follicle quality and developmental competence has been pursued in numerous studies, but with inconsistent outcomes. Here, we aimed to identify these characteristics by analysis of the follicular fluid (FF) steroid profile in relation to cumulus-oocyte complex (COC) morphology and follicle size, followed by molecular substantiation. Multiparous sows at weaning were used to facilitate analysis at the start of the follicular phase of the oestrus cycle. Sows with a higher average follicle size (≥5 mm vs. < 5 mm) had a higher follicular fluid β-estradiol concentration, but did not differ in other measured steroids. Sows with high compared to low percentage high-quality COCs (<70% vs. ≥70% high-quality) had follicular fluid with a higher concentration of β-estradiol, 19-norandrostenedione, progesterone, and α-testosterone, while the concentration of cortisol was lower. Transcriptome analysis of granulosa cells of healthy follicles of sows with a high percentage high-quality COCs showed higher abundance of transcripts involved in ovarian steroidogenesis (e.g., CYP19A2 and 3, POR, VEGFA) and growth (IGF1) and differential abundance of transcripts involved in granulosa cell apoptosis (e.g., GADD45A, INHBB). Differences in aromatase transcript abundance (CYP19A1, 2 and 3) were confirmed at the protein level. In addition, sows with a high percentage high-quality COCs lost less weight during lactation and had higher plasma IGF1 concentration at weaning, which may have affected COC quality. To the best of our knowledge, this study is also the first to report the relation between FF steroid profile and COC quality.
Collapse
Affiliation(s)
- N G J Costermans
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands.,Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - N M Soede
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - F van Tricht
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, The Netherlands
| | - M Blokland
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - J Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - K J Teerds
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Costermans NGJ, Teerds KJ, Middelkoop A, Roelen BAJ, Schoevers EJ, van Tol HTA, Laurenssen B, Koopmanschap RE, Zhao Y, Blokland M, van Tricht F, Zak L, Keijer J, Kemp B, Soede NM. Consequences of negative energy balance on follicular development and oocyte quality in primiparous sows†. Biol Reprod 2021; 102:388-398. [PMID: 31504218 PMCID: PMC7016286 DOI: 10.1093/biolre/ioz175] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/22/2019] [Indexed: 01/28/2023] Open
Abstract
Metabolic demands of modern hybrid sows have increased over the years, which increases the chance that sows enter a substantial negative energy balance (NEB) during lactation. This NEB can influence the development of follicles and oocytes that will give rise to the next litter. To study effects of a lactational NEB on follicular development, we used 36 primiparous sows of which 18 were subjected to feed restriction (3.25 kg/day) and 18 were full-fed (6.5 kg/day) during the last 2 weeks of a 24.1 ± 0.3 day lactation. Feed restriction resulted in a 70% larger lactational body weight loss and 76% higher longissimus dorsi depth loss, but similar amounts of backfat loss compared to the full fed sows. These changes were accompanied by lower plasma insulin-like growth factor 1 (IGF1) and higher plasma creatinine levels in the restricted sows from the last week of lactation onward. Ovaries were collected 48 h after weaning. Restricted sows had a lower average size of the 15 largest follicles (−26%) and cumulus–oocyte complexes showed less expansion after 22 h in vitro maturation (−26%). Less zygotes of restricted sows reached the metaphase stage 24 h after in vitro fertilization and showed a higher incidence of polyspermy (+89%). This shows that feed restriction had severe consequences on oocyte developmental competence. Follicular fluid of restricted sows had lower IGF1 (−56%) and steroid levels (e.g., β-estradiol, progestins, and androgens), which indicated that follicles of restricted sows were less competent to produce steroids and growth factors needed for oocytes to obtain full developmental competence.
Collapse
Affiliation(s)
- N G J Costermans
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands.,Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - K J Teerds
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - A Middelkoop
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - B A J Roelen
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - E J Schoevers
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - H T A van Tol
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - B Laurenssen
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - R E Koopmanschap
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Y Zhao
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - M Blokland
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - F van Tricht
- Wageningen Food Safety Research (WFSR), Wageningen University & Research, Akkermaalsbos 2, 6708WB Wageningen, The Netherlands
| | - L Zak
- TopigsNorsvin Research Center B. V., Beuningen, The Netherlands
| | - J Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - B Kemp
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - N M Soede
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Costermans NGJ, Soede NM, Blokland M, van Tricht F, Keijer J, Kemp B, Teerds KJ. Steroid profile of porcine follicular fluid and blood serum: Relation with follicular development. Physiol Rep 2019; 7:e14320. [PMID: 31883224 PMCID: PMC6934872 DOI: 10.14814/phy2.14320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to identify follicular fluid (FF) steroids which reflect follicular development in the early stages of the follicular phase and to establish whether the levels of these FF steroids correspond to their levels in serum. If these relations are established, serum steroid profiles may be used to monitor follicular development already in this early stage of the follicular phase. We used samples of two experiments, one with multiparous sows at the onset of the follicular phase (weaning) and one with primiparous sows at the midfollicular phase (48 hr after weaning). Complete steroid profiles were measured in pooled FF of the 15 largest follicles and serum using high-performance liquid chromatography-tandem mass spectrometry. In experiment 1, pooled FF volume, as a measure for average follicle size, tended to be positively related to higher FF 17β-estradiol levels (β = 0.56, p = .08). In experiment 2, a larger FF volume was related not only to FF higher 17β-estradiol levels (β = 2.11, p < .001) but also to higher levels of β-nortestosterone (β = 1.15, p < .0001) and its metabolite 19-norandrostenedione (β = 1.27, p < .01). In addition, FF volume was related to higher FF 17α-OH-pregnenolone (β = 1.63, p = .03) and 17α-OH-progesterone (β = 1.83, p < .001), which could indicate that CYP17,20-lyase activity is limiting for 17β-estradiol production in larger follicles at the beginning of the follicular phase. In serum, most of the steroids were present at lower levels compared to FF, except for the corticosteroids. Serum progestins and androgens were never related to follicle pool volume and steroid levels did not differ in the midfollicular phase compared to the onset of the follicular phase in the second experiment. Serum steroid levels therefore poorly reflect the developmental stage of the follicle pool in the first half of the follicular phase of the estrous cycle in sows.
Collapse
Affiliation(s)
- Natasja G J Costermans
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands.,Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Nicoline M Soede
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Marco Blokland
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, The Netherlands
| | - Frederike van Tricht
- Wageningen Food Safety Research (WFSR), Wageningen University and Research, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Bas Kemp
- Adaptation Physiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Katja J Teerds
- Human and Animal Physiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
4
|
Effects of serum and follicular fluid on the in vitro maturation of canine oocytes. Theriogenology 2019; 143:10-17. [PMID: 31830685 DOI: 10.1016/j.theriogenology.2019.11.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/16/2019] [Accepted: 11/30/2019] [Indexed: 11/23/2022]
Abstract
The effects of gonadotropin, serum and follicular fluid on the in vitro maturation of canine oocytes were examined. Additionally, spindle size and spindle migration in MI-stage oocytes derived by in vivo or in vitro maturation were evaluated for the first time. Mature oocytes collected from beagle dog ovaries were divided into two experiments. In experiment I, oocytes were cultured in basic TCM 199 medium supplemented with different levels of P4, E2 and FSH. In experiment II, oocytes in the estrus or anestrus stage were cultured in basic medium supplemented with 30% or 40% canine serum plus 20% or 10% follicular fluid. Our results showed that in experiment I, more oocytes reached MI-MII (18.57%) after supplementation with 1 IU/ml FSH+ 5 IU/ml P4 + 5 IU/ml E2 than after supplementation with other levels of reagents. However, there were no significant differences among the groups (three different concentration groups and a control group) with respect to the proportions of oocytes that resumed meiosis, completed meiosis or degenerated. In experiment II, the number of oocytes from the estrus stage that reached MI-MII in TCM 199 medium supplemented with 40% canine serum and 10% follicular fluid (46.72%) was significantly higher (p < 0.01) than the number of oocytes from the anestrus stage that reached MI-MII in medium supplemented with 30% canine serum and 20% follicular fluid (21.84%). In addition, the degeneration rate was significantly lower (p < 0.05) in the 40% canine serum/10% follicular fluid group from follicular stage than in the other three groups. The average spindle length of the MI-stage oocytes that matured in vivo was significantly (p < 0.01) longer than that of the MI-stage oocytes that matured in vitro (21.75 vs. 14.39 μm). These results suggest that supplementation of the culture medium with 40% estrus serum and 10% follicular fluid had a positive influence on the in vitro maturation of canine oocytes and greatly affected spindle size in MI-stage oocytes.
Collapse
|