1
|
Liu X, Chen W, Huang B, Wang X, Peng Y, Zhang X, Chai W, Khan MZ, Wang C. Advancements in copy number variation screening in herbivorous livestock genomes and their association with phenotypic traits. Front Vet Sci 2024; 10:1334434. [PMID: 38274664 PMCID: PMC10808162 DOI: 10.3389/fvets.2023.1334434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
Copy number variations (CNVs) have garnered increasing attention within the realm of genetics due to their prevalence in human, animal, and plant genomes. These structural genetic variations have demonstrated associations with a broad spectrum of phenotypic diversity, economic traits, environmental adaptations, epidemics, and other essential aspects of both plants and animals. Furthermore, CNVs exhibit extensive sequence variability and encompass a wide array of genomes. The advancement and maturity of microarray and sequencing technologies have catalyzed a surge in research endeavors pertaining to CNVs. This is particularly prominent in the context of livestock breeding, where molecular markers have gained prominence as a valuable tool in comparison to traditional breeding methods. In light of these developments, a contemporary and comprehensive review of existing studies on CNVs becomes imperative. This review serves the purpose of providing a brief elucidation of the fundamental concepts underlying CNVs, their mutational mechanisms, and the diverse array of detection methods employed to identify these structural variations within genomes. Furthermore, it seeks to systematically analyze the recent advancements and findings within the field of CNV research, specifically within the genomes of herbivorous livestock species, including cattle, sheep, horses, and donkeys. The review also highlighted the role of CNVs in shaping various phenotypic traits including growth traits, reproductive traits, pigmentation and disease resistance etc., in herbivorous livestock. The main goal of this review is to furnish readers with an up-to-date compilation of knowledge regarding CNVs in herbivorous livestock genomes. By integrating the latest research findings and insights, it is anticipated that this review will not only offer pertinent information but also stimulate future investigations into the realm of CNVs in livestock. In doing so, it endeavors to contribute to the enhancement of breeding strategies, genomic selection, and the overall improvement of herbivorous livestock production and resistance to diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding, Liaocheng University, Liaocheng, China
| |
Collapse
|
2
|
Bai J, Wang X, Zhao Y. Research Note: Association of insulin-like growth factor 1 receptor gene polymorphism with production performance in Savimalt and French Giant meat-type quails. Poult Sci 2023; 102:103074. [PMID: 37856909 PMCID: PMC10591003 DOI: 10.1016/j.psj.2023.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023] Open
Abstract
This study aimed to investigate the association of insulin-like growth factor 1 receptor (IGF-1R) gene single nucleotide polymorphisms (SNPs) with growth traits and carcass traits of quail by PCR amplification and direct sequencing technology. Genomic DNA was extracted from blood samples collected from 49 female French Giant (FG) quails and 36 female Savimalt (SV) quails as part of this study. Growth traits and carcass traits were measured and assessed for IGF-1R gene analysis in the 2 meat-type quail strains. The results showed that 2 SNPs (A57G and A72T) of the IGF-1R gene were detected in the 2 quail strains. The A57G (P = 0.002) and A72T (P = 0.026) were significantly associated with breastbone length (BBL) in FG. Whereas A57G was significantly associated with chest weight (CW, P = 0.004), BBL (P = 0.009), and body length (BL, P = 0.009) in SV, while A72T was significantly associated with BBL (P = 0.014) and BL (P = 0.028) in SV. Haplotypes based on these 2 SNPs showed significant effects on BBL in FG strain (P = 0.000), and they also had significant effects on CW (P = 0.007), BBL (P = 0.004), and BL (P = 0.001) in SV strain. Additionally, A57G was significantly associated with liver rate (LR) in FG strain (P = 0.017). A72T showed significant associations with dressed carcass weight (DCW, P = 0.048) and breast muscle weight (BMW, P = 0.018) in FG strain. A57G was significantly associated with DCW (P = 0.048), whole net carcass weight (WNCW, P = 0.048), BMW (P = 0.036), and liver muscle rate (LMR, P = 0.003) in SV strain. Haplotypes also displayed significant effects on BMW (P = 0.029) and LMR (P = 0.010) in FG strain. These findings indicated that the IGF-1R gene could serve as a valuable molecular genetic marker for enhancing growth traits and carcass traits in meat-type quails.
Collapse
Affiliation(s)
- Junyan Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Xinle Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yonggang Zhao
- China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China.
| |
Collapse
|
3
|
Yang Y, Tang J, Yang H, Yang S, Cai M, Qi A, Lan X, Huang B, Su C, Chen H. Copy number variation of bovine S100A7 as a positional candidate affected body measurements. Anim Biotechnol 2023; 34:2141-2149. [PMID: 35815693 DOI: 10.1080/10495398.2022.2077740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Beef production is closely related to the national economy and the attention has been paid to the improvement of beef cattle by molecular markers associated. Copy number variations (CNVs) recently have been gained many researches and recognized as an important source of genetic variation. Extensive studies have indicated that CNVs have effects on a large range of economic traits by a wide range of gene copy number alteration. S100A7 is a member of S100 family which is a famous family of Ca2+-binding proteins. S100A7 plays a crucial role in many important phenotypes (progress) including inflammatory diseases, psoriasis, obesity, etc. The aim of our study was to explore the phenotypic effects of CNV located in the S100A7 gene of bovine chromosome 3. We detected S100A7 CNV by qPCR in different cattle breeds, including Qinchuan cattle, Yunling cattle, Xianan cattle and a crossbred group Pinan. The copy number was identified as gain, normal and loss type, our results showed that the gain type was the main type in three types of S100A7 CNV of the whole tested breeds. After CNV detection, association analysis between S100A7 CNV and growth traits was carried out in four cattle breeds. We found significant effects of the CNV on cattle growth traits with differently preferred CNV types such as gain type with better chest depth (p = 0.043) in QC, loss type with better body length (p = 0.008) and rump width (p = 0.014) in YL, normal with better chest girth (p = 0.001), gain with better waist width (p = 0.001) and rump width (p = 0.044) in PN. These results suggested that the S100A7 CNV could affect the phenotypic traits and be used as a promising genetic marker for cattle molecular breeding.
Collapse
Affiliation(s)
- Yu Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Jia Tang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Haiyan Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Shuling Yang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Ming Cai
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Ao Qi
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Xianyong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Bizhi Huang
- Yunnan Academy of Grassland and Animal Science, Kunming, China
| | - Chao Su
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A & F University, Yangling, China
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
4
|
Xu Z, Wang X, Song X, An Q, Wang D, Zhang Z, Ding X, Yao Z, Wang E, Liu X, Ru B, Xu Z, Huang Y. Association between the copy number variation of CCSER1 gene and growth traits in Chinese Capra hircus (goat) populations. Anim Biotechnol 2023; 34:1377-1383. [PMID: 35108172 DOI: 10.1080/10495398.2022.2025818] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Recently, Coiled-coil serine-rich protein 1 (CCSER1) gene is reported to be related to economic traits in livestock, and become a hotspot. In our study, we detected CCSER1 gene CNV in 693 goats from six breeds (GZB, GZW, AN, BH, HG, TH) by quantitative real-time PCR (qPCR) and the association analysis between the types of CNV and growth traits. Then, CCSER1 gene expression pattern was discovered in seven tissues from NB goats. Our results showed that the CCSER1 gene copy numbers were distributed differently in the aforementioned six breeds. The type of CCSER1 gene CNV was significantly associated with body weight and heart girth traits in GZW goat, in which individuals with deletion type were dominant in body weight trait (P < 0.05), while the normal type individuals were more advantageous in heart girth trait (P < 0.01); and there was a significant association with heart girth in TH goat (P < 0.05), which normal type was the dominant one. The expression profile revealed that CCSER1 gene has the highest level in the lung, followed by the small intestine and heart. In conclusion, our result is dedicated to an in-depth study of the novel CCSER1 gene CNV site and to provide essential information for Chinese goats molecular selective breeding in the future.
Collapse
Affiliation(s)
- Zijie Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Xingya Song
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Qingming An
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou, People's Republic of China
| | - Dahui Wang
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| | - Eryao Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, People's Republic of China
| |
Collapse
|
5
|
Bai J, Wang X, Li J, Wang L, Fan H, Chen M, Zeng F, Lu X, He Y. Research Note: Association of IGF-1R gene polymorphism with egg quality and carcass traits of quail (Coturnix Japonica). Poult Sci 2023; 102:102617. [PMID: 37094469 PMCID: PMC10141505 DOI: 10.1016/j.psj.2023.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF-1R) gene is the main effector of insulin-like growth factor (IGF), which plays an important role in growth, development and reproduction of the animal organism. This study aimed to investigate the association of IGF-1R gene single nucleotide polymorphisms (SNPs) with egg quality and carcass traits of quail by direct sequencing. In this study, genomic DNA was extracted from quail blood samples of 46 Chinese yellow (CY) quail, 49 Beijing white (BW) quail and 48 Korean (KO) quail strains. Egg quality and carcass traits were measured and used for IGF-1R gene analysis in 3 quail strains. The results showed that 2 SNPs (A57G and A72T) of the IGF-1R gene were detected in 3 quail strains. The A57G was significantly associated with yolk width (YWI) in BW strain (P < 0.05). Whereas A72T was significantly associated with egg shell thickness (EST) in BW strain (P < 0.05), and significantly associated with egg weight (EW), egg long (EL), and egg short (ES) in KO strain (P < 0.05). Haplotypes based on 2 SNPs showed significant effect on EST in 3 quail strains (P < 0.05), it also has a significant effect on EW in KO strain (P < 0.05). Meanwhile, A72T was significantly associated with liver weight (LW) and dressing percentage (DP) in 3 strains (P < 0.05). Haplotypes showed significant effect on LW (P < 0.05). Therefore, the IGF-1R gene may be a molecular genetic marker to improve egg quality and carcass traits in quails.
Collapse
Affiliation(s)
- Junyan Bai
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China.
| | - Xinle Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Jingyun Li
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Longwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Hongdeng Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Mengke Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Fanlin Zeng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Xiaoning Lu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| | - Yuhan He
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471023, China
| |
Collapse
|
6
|
Copy Number Variation of the SOX6 Gene and Its Associations with Growth Traits in Ashidan Yak. Animals (Basel) 2022; 12:ani12223074. [PMID: 36428302 PMCID: PMC9686495 DOI: 10.3390/ani12223074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Copy number variation (CNV) is a fundamental type of structural variation of the genome affecting the economic traits of livestock. The SOX6 gene (sex-determining region Y-box 6), as a transcription factor, has multiple functions with regard to sex determination, embryonic growth, the nervous system development, as well as bone, and various organ formation. This study employed quantitative real-time fluorescence quota PCR (qPCR) for detecting the SOX6-CNV of the 311 Ashidan yaks and analyzed the correlation of the SOX6-CNV with four phenotypes (including body weight, withers height, body length, and chest girth) of the yaks aged 6, 12, 18, and 30 months using ANOVA and multiple comparisons. Furthermore, the SOX6 gene expression was identified in seven different tissues of the yaks. The experiment results demonstrated the expression of SOX6 in each tissue, and the kidney and muscle tissue were found to have higher relative expression levels. Based on the processing by IBM SPSS software, SOX6-CNV was significantly correlated with the chest girth of the 6-months old yaks (p < 0.05) and 30-months yaks (p < 0.05), and withers height of 6 months yaks (p < 0.05) and 18-months yaks (p < 0.05), as well as the normal type of CNV, was chosen for yak breeding. In conclusion, SOX6 might be prominently involved in promoting growth and development of yaks, suggesting that the SOX6 gene can be used in breeding yaks by molecular marker-assisted selection (MAS). The study also offered some important insights into the references and clues for the genetic breeding of yaks.
Collapse
|
7
|
The relationship between MUC19 copy number variation and growth traits of Chinese cattle. Gene 2022; 851:147010. [DOI: 10.1016/j.gene.2022.147010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/04/2022]
|
8
|
Zhang Z, Chu M, Bao Q, Bao P, Guo X, Liang C, Yan P. Two Different Copy Number Variations of the SOX5 and SOX8 Genes in Yak and Their Association with Growth Traits. Animals (Basel) 2022; 12:ani12121587. [PMID: 35739923 PMCID: PMC9219506 DOI: 10.3390/ani12121587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Copy number variation (CNV) is a structural variant with significant impact on genetic diversity. CNV has been widely used in breeding for growth traits, meat production or quality, and coat color. SRY-like box genes (SOXs) are a class of transcription factors that play a regulatory role in cell fate specification and differentiation. SOX5 and SOX8 belong to subgroups D and E of the SOXs, respectively. Previous studies have shown that SOX5 and SOX8 are essential in the development of bones. In this study, we explored the association between the growth traits and CNVs of SOX5 and SOX8 in 326 Ashidan yaks and detected mRNA expression levels in different tissues. Our results illustrated that CNVs of SOX5 and SOX8 were significantly associated with withers height at 18 months of age and chest girth at 30 months of age (p < 0.05). The CNV combination of SOX5 and SOX8 was significantly associated with withers height at 18 months of age (p < 0.01). SOX5 expression in the lung was significantly higher than in the heart, spleen, kidney, and muscle (p < 0.05). SOX8 expression in the lung was significantly higher than in the liver and muscle (p < 0.05). Our results provide evidence that the CNVs of SOX5 and SOX8 genes could be used as new markers for the selection of yak growth traits.
Collapse
Affiliation(s)
- Zhilong Zhang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Qi Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (C.L.); (P.Y.)
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (Z.Z.); (M.C.); (Q.B.); (P.B.); (X.G.)
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
- Correspondence: (C.L.); (P.Y.)
| |
Collapse
|
9
|
Dai R, Huang C, Wu X, Ma X, Chu M, Bao P, Pei J, Guo X, Yan P, Liang C. Copy number variation (CNV) of the AHR gene in the Ashidan yak and its association with growth traits. Gene 2022; 826:146454. [PMID: 35367304 DOI: 10.1016/j.gene.2022.146454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 01/03/2023]
Abstract
Copy number variation (CNV) is a principal genomic structure variation affecting the gene expression through the dose-effect and change of gene regulatory region. It plays an important role in regulating the various complex traits of vertebrates. The aromatic hydrocarbon receptor (AHR) is a member of ligand-dependent transcription factors which belong to the alkaline helix-loop-helix PASS family. It is used as a conservative environmental sensor during biological evolution. This study, tracked the growth data (body weight, withers height, body length, chest girth) of 332 yaks in four stages (6, 12, 18, and 30 months) were tracked. The CNV of the yaks was analyzed using real-time quantitative PCR, and the correlation between CNV of AHR and yak growth traits was analyzed using the SPSS and R software. The AHR gene expression profiles were assessed in different tissues of the 18-month-old yak. The statistical analysis indicated the AHR-CNV of the Ashidan yak to significantly correlate with the body length (P < 0.05), and was found to be correlated with the withers height at 18 months old (P < 0.01) with extreme significance. To sum up, this study for the first time discussed the relationship between AHR-CNV and the growth traits of the Ashidan yak. The results indicated that the AHR gene might become a new molecular marker in the breeding yak.
Collapse
Affiliation(s)
- Rongfeng Dai
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chun Huang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoyun Wu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xiaoming Ma
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jie Pei
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xian Guo
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Chunnian Liang
- Key Laboratory of Yak Breeding Engineering Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Science, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
10
|
Li X, Ding X, Liu L, Yang P, Yao Z, Lei C, Chen H, Huang Y, Liu W. Copy number variation of bovine DYNC1I2 gene is associated with body conformation traits in chinese beef cattle. Gene 2021; 810:146060. [PMID: 34740731 DOI: 10.1016/j.gene.2021.146060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/19/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
Previous, studies have shown that the dynein transporter compound has a role in diseases such as intellectual disability and cerebral malformations. However, the study of CNV in DYNC1I2 gene has not been reported. Q-PCR and data association analysis were used for DYNC1I2 gene copy in this study. In this study, blood samples were collected from five breeds of Chinese cattle (Qingchuan cattle, Xianan cattle, Yunling cattle, Pinan cattle and Guyuan cattle) for DYNC1I2 gene CNV type detection. SPSS 20.0 software and method of ANOVA were used to analyzed the association between types of CNV and growth traits. Results reveal that the distribution of different copy number types in different cattle breeds is different. Association analysis indicate that CNV of DYNC1I2 gene showed a positive effect in cattle growth: in XN cattle, individuals with deletion types showed better performance on height at hip cross (P < 0.05); individuals with duplication types have better performance on body length (P < 0.05) in PN cattle; individuals with deletion types was significantly correlated with chest width and Hucklebone width (P < 0.05) in QC cattle; individuals with duplication types in Yunling cattle were better than the normal types, and there was a significant correlation between copy number variant and chest depth (P < 0.05). The results showed that CNV markers closely related to cattle production traits were detected at DNA level, which could be used as an important candidate molecular marker for marker-assisted selection of growth traits in Chinese cattle, and provided a new research basis for genetics and breeding of Chinese beef cattle.
Collapse
Affiliation(s)
- Xinmiao Li
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang 830052, People's Republic of China; College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xiaoting Ding
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Lingling Liu
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang 830052, People's Republic of China.
| | - Peng Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Zhi Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Hong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Wujun Liu
- College of Animal Science, Xinjiang Agriculture University, Urumqi, Xinjiang 830052, People's Republic of China.
| |
Collapse
|
11
|
Jang J, Kim K, Lee YH, Kim H. Population differentiated copy number variation of Bos taurus, Bos indicus and their African hybrids. BMC Genomics 2021; 22:531. [PMID: 34253178 PMCID: PMC8276479 DOI: 10.1186/s12864-021-07808-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/10/2021] [Indexed: 01/10/2023] Open
Abstract
Background CNV comprises a large proportion in cattle genome and is associated with various traits. However, there were few population-scale comparison studies on cattle CNV. Results Here, autosome-wide CNVs were called by read depth of NGS alignment result and copy number variation regions (CNVRs) defined from 102 Eurasian taurine (EAT) of 14 breeds, 28 Asian indicine (ASI) of 6 breeds, 22 African taurine (AFT) of 2 breeds, and 184 African humped cattle (AFH) of 17 breeds. The copy number of every CNVRs were compared between populations and CNVRs with population differentiated copy numbers were sorted out using the pairwise statistics VST and Kruskal-Wallis test. Three hundred sixty-two of CNVRs were significantly differentiated in both statistics and 313 genes were located on the population differentiated CNVRs. Conclusion For some of these genes, the averages of copy numbers were also different between populations and these may be candidate genes under selection. These include olfactory receptors, pathogen-resistance, parasite-resistance, heat tolerance and productivity related genes. Furthermore, breed- and individual-level comparison was performed using the presence or copy number of the autosomal CNVRs. Our findings were based on identification of CNVs from short Illumina reads of 336 individuals and 39 breeds, which to our knowledge is the largest dataset for this type of analysis and revealed important CNVs that may play a role in cattle adaption to various environments. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07808-7.
Collapse
Affiliation(s)
- Jisung Jang
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Kwondo Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Ho Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| | - Heebal Kim
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea. .,Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea. .,eGnome, Inc, Seoul, South Korea.
| |
Collapse
|
12
|
Grochowska E, Lisiak D, Akram MZ, Adeniyi OO, Lühken G, Borys B. Association of a polymorphism in exon 3 of the IGF1R gene with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. Meat Sci 2020; 172:108314. [PMID: 32987303 DOI: 10.1016/j.meatsci.2020.108314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/01/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to genotype the polymorphism (c.654G > A) in the exon 3 of the insulin-like growth factor 1 receptor gene (IGF1R) and to analyze its association with growth, body size, slaughter and meat quality traits in Colored Polish Merino sheep. In total, 67 traits were analyzed. The IGF1R polymorphism was genotyped using the polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) method. The MIXED procedure of the SAS software was used to assess the genotypic effects of the polymorphism (c.654G > A) on production traits of interest. The IGF1R c.654G > A genotypes were found to have a significant effect on the average daily gain between the 56th and 78th day of life, cold carcass, leg part, leg cut, fore shank, and kidney weights, as well as eye of loin depth, intramuscular fat content, and water-holding capacity of meat. The results suggest that the studied polymorphism may provide useful information for marker-assisted selection for increased meat performance in Colored Polish Merino sheep.
Collapse
Affiliation(s)
- E Grochowska
- Department of Animal Biotechnology and Genetics, UTP University of Science and Technology, Mazowiecka 28 St, 85-084 Bydgoszcz, Poland.
| | - D Lisiak
- Department of Meat and Fat Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology, Rakowiecka 36 St., 02-532 Warsaw, Poland
| | - M Z Akram
- Department of Animal Production and Technologies, Niğde Ömer Halisdemir University, 51240 Niğde, Turkey
| | - O O Adeniyi
- Institute of Animal Breeding and Genetics, Justus-Liebig University, Ludwigstrasse 21, 35390 Giessen, Germany
| | - G Lühken
- Institute of Animal Breeding and Genetics, Justus-Liebig University, Ludwigstrasse 21, 35390 Giessen, Germany
| | - B Borys
- National Research Institute of Animal Production, Experimental Station Kołuda Wielka, Parkowa 1 St., 88-160 Janikowo, Poland
| |
Collapse
|
13
|
Genomic Structural Diversity in Local Goats: Analysis of Copy-Number Variations. Animals (Basel) 2020; 10:ani10061040. [PMID: 32560248 PMCID: PMC7341319 DOI: 10.3390/ani10061040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Copy-number variations (CNVs) are one of the widely dispersed forms of structural variations in mammalian genomes and are known to be present in genomic regions that regulate important physiological functions. In this study, CNV detection was performed starting from genotypic data of 120 individuals, belonging to four Sicilian dairy goat breeds, genotyped with the Illumina GoatSNP50 BeadChip array. Using PennCNV software, a total of 702 CNVs were identified in 107 individuals. These were merged in 75 CNV regions (CNVRs), i.e., regions containing CNVs overlapped by at least 1 base pair. Functional annotation of the CNVRs allowed the identification of 139 genes/loci within the most frequent CNVRs, which are involved in local adaptation, mild behaviour, immune response, reproduction, and olfactory receptors. This study provides insights into the genomic variations within these Italian goat breeds and should be of value for future studies to identify the relationships between this type of genetic variation and phenotypic traits. Abstract Copy-number variations (CNVs) are one of the widely dispersed forms of structural variations in mammalian genomes, and are present as deletions, insertions, or duplications. Only few studies have been conducted in goats on CNVs derived from SNP array data, and many local breeds still remain uncharacterized, e.g., the Sicilian goat dairy breeds. In this study, CNV detection was performed, starting from the genotypic data of 120 individuals, belonging to four local breeds (Argentata dell’Etna, Derivata di Siria, Girgentana, and Messinese), genotyped with the Illumina GoatSNP50 BeadChip array. Overall, 702 CNVs were identified in 107 individuals using PennCNV software based on the hidden Markov model algorithm. These were merged in 75 CNV regions (CNVRs), i.e., regions containing CNVs overlapped by at least 1 base pair, while 85 CNVs remained unique. The part of the genome covered by CNV events was 35.21 Mb (1.2% of the goat genome length). Functional annotation of the CNVRs allowed the identification of 139 genes/loci within the most frequent CNVRs that are involved in local adaptations, such as coat colour (ADAMTS20 and EDNRA), mild behaviour (NR3C2), immune response (EXOC3L4 and TNFAIP2), reproduction (GBP1 and GBP6), and olfactory receptors (OR7E24). This study provides insights into the genomic variations for these Sicilian dairy goat breeds and should be of value for future studies to identify the relationships between this type of genetic variation and phenotypic traits.
Collapse
|
14
|
Copy Number Variation of the PIGY Gene in Sheep and Its Association Analysis with Growth Traits. Animals (Basel) 2020; 10:ani10040688. [PMID: 32326606 PMCID: PMC7222781 DOI: 10.3390/ani10040688] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/07/2020] [Accepted: 04/10/2020] [Indexed: 12/31/2022] Open
Abstract
Simple Summary The PIGY (phosphatidylinositol glycan anchor biosynthesis class Y) gene is a member of the PIG gene family and encodes the glycosylphosphatidylinositol-N-acetylglucosaminyltransferase (GPI-GnT) complex. It initiates the biosynthesis of GPI and plays an important role in cell–cell interactions. Sequencing has revealed a 3600 bp copy number variation (CNV) in exon 2 of the PIGY gene in sheep, potentially altering a functional part of the protein. The CNV overlaps 28 quantitative trait loci that are relevant to some economic traits like muscle density and carcass weight. We screened for this CNV of the PIGY gene in 569 individuals, namely, 240 Chaka sheep (CKS), 168 Hu sheep (HS), and 161 small-tailed Han sheep (STHS), and analyzed the association between the presence of this CNV and sheep body size traits. The results showed that the loss-type CNV was more prevalent than other types in these three breeds, and there were significant effects of the PIGY gene CNV on body weight, chest circumference, and circumference of cannon bone of sheep. The results showed that sheep with gain-type CNV had better growth traits than those with other types. The findings reveal the relationship between the CNV of the PIGY gene and growth traits of sheep, suggesting that CNV could be utilized for improved molecular breeding of sheep. Abstract Copy number variation (CNV) is a type of genomic variation with an important effect on animal phenotype. We found that the PIGY gene contains a 3600 bp copy number variation (CNV) region located in chromosome 6 of sheep (Oar_v4.0 36,121,601–36,125,200 bp). This region overlaps with multiple quantitative trait loci related to phenotypes like muscle density and carcass weight. Therefore, in this study, the copy number variation of the PIGY gene was screened in three Chinese sheep breeds, namely, Chaka sheep (CKS, May of 2018, Wulan County, Qinghai Province, China), Hu sheep (HS, May of 2015, Mengjin County, Henan Province, China), and small-tailed Han sheep (STHS, May of 2016, Yongjing, Gansu Province, China). Association analyses were performed on the presence of CNV and sheep body size traits. We used real-time quantitative PCR (qPCR) to detect the CNV for association analysis. According to the results, the loss-type CNV was more common than other types in the three breeds (global average: loss = 61.5%, normal = 17.5%, and gain = 21.0%). The association analysis also showed significant effects of the PIGY gene CNV on body weight, chest circumference, and circumference of the cannon bone of sheep. Sheep with gain-type CNV had better growth traits than those with other types. The results indicate a clear relationship between the PIGY gene CNV and growth traits of sheep, suggesting the use of CNV as a new molecular breeding marker.
Collapse
|
15
|
Yan XM, Zhang Z, Meng Y, Li HB, Gao L, Luo D, Jiang H, Gao Y, Yuan B, Zhang JB. Genome-wide identification and analysis of circular RNAs differentially expressed in the longissimus dorsi between Kazakh cattle and Xinjiang brown cattle. PeerJ 2020; 8:e8646. [PMID: 32211228 PMCID: PMC7081781 DOI: 10.7717/peerj.8646] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Xinjiang brown cattle have better meat quality than Kazakh cattle. Circular RNAs (circRNAs) are a type of RNA that can participate in the regulation of gene transcription. Whether circRNAs are differentially expressed in the longissimus dorsi between these two types of cattle and whether differentially expressed circRNAs regulate muscle formation and differentiation are still unknown. In this study, we established two RNA-seq libraries, each of which consisted of three samples. A total of 5,177 circRNAs were identified in longissimus dorsi samples from Kazakh cattle and Xinjiang brown cattle using the Illumina platform, 46 of which were differentially expressed. Fifty-five Gene Ontology terms were significantly enriched, and 12 Kyoto Encyclopedia of Genes and Genomes pathways were identified for the differentially expressed genes. Muscle biological processes were associated with the origin genes of the differentially expressed circRNAs. In addition, we randomly selected six overexpressed circRNAs and compared their levels in longissimus dorsi tissue from Kazakh cattle and Xinjiang brown cattle using RT-qPCR. Furthermore, we predicted 66 interactions among 65 circRNAs and 14 miRNAs using miRanda and established a coexpression network. A few microRNAs known for their involvement in myoblast regulation, such as miR-133b and miR-664a, were identified in this network. Notably, bta_circ_03789_1 and bta_circ_05453_1 are potential miRNA sponges that may regulate insulin-like growth factor 1 receptor expression. These findings provide an important reference for prospective investigations of the role of circRNA in longissimus muscle growth and development. This study provides a theoretical basis for targeting circRNAs to improve beef quality and taste.
Collapse
Affiliation(s)
- Xiang-Min Yan
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China.,Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Ürümqi, Xinjiang, China
| | - Zhe Zhang
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Yu Meng
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Hong-Bo Li
- Institute of Animal Husbandry, Xinjiang Academy of Animal Husbandry, Ürümqi, Xinjiang, China
| | - Liang Gao
- Yili Vocational and Technical College, Yili, Xinjiang, China
| | - Dan Luo
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Hao Jiang
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Yan Gao
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Bao Yuan
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| | - Jia-Bao Zhang
- Department of Laboratory Animals, Jilin University, Changchun, Jilin, China
| |
Collapse
|
16
|
Xu Z, Wang X, Zhang Z, An Q, Wen Y, Wang D, Liu X, Li Z, Lyu S, Li L, Wang E, Ru B, Xu Z, Huang Y. Copy number variation of CADM2 gene revealed its association with growth traits across Chinese Capra hircus (goat) populations. Gene 2020; 741:144519. [PMID: 32126252 DOI: 10.1016/j.gene.2020.144519] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
Copy number variations (CNVs) are the wide structural variations ranging from 50 bp to several Mb at genome which can affect gene expression and further impacting growth and development traits of livestock. Comparing with single nucleotide polymorphisms (SNPs), CNVs can better explain the genetic and phenotypic diversity, are increasingly important in biological research. As a member of immunoglobulin super-family, cell adhesion molecule 2 (CADM2) plays a vital role in cancer development and metabolic regulation. Here, we tested the CNV of CADM2 gene in 443 goats across five breeds (Guizhou white goat, GZW; Guizhou black goat, GZB; Africa Nubian goat, AN; Boer goat × Huai goat, BH; Boer goat, BG) and detected its association with phenotypic traits. Subsequently, we analyzed the CADM2 gene expression level in different tissues of NB goats (n = 3, Nubian × Black) and the transcriptional expression in lung is much higher than others. The results showed that the CNV of CADM2 has a significant association with withers height and body length in GZB goat (P < 0.01), in which individuals with type of deletion were superior to those with duplication or normal type in term of body hight and body length (P < 0.01). In summary, this study confirmed the association between CNV of CADM2 gene and growth traits, and our research data indicated the CADM2-CNV may considered as a prospective candidate for the molecular marker-assisted selection breeding of goat growth traits, which conducived to accelerating the genetic amelioration in Chinese goats.
Collapse
Affiliation(s)
- Zijie Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xianwei Wang
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Zijing Zhang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450002, People's Republic of China
| | - Qingming An
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou 554300, People's Republic of China
| | - Yifan Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Dahui Wang
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou 554300, People's Republic of China
| | - Xian Liu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Zhiming Li
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Shijie Lyu
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou 554300, People's Republic of China
| | - Lijuan Li
- Guizhou University of Engineering Science, Institute of Bijie Test Area, Bijie, Guizhou 551700, People's Republic of China
| | - Eryao Wang
- College of Agriculture and Forestry Engineering, Tongren University, Tongren, Guizhou 554300, People's Republic of China
| | - Baorui Ru
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Zejun Xu
- Henan Provincial Animal Husbandry General Station, Zhengzhou, Henan 450008, People's Republic of China
| | - Yongzhen Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|