1
|
Wang Q, Wang S, Zhu S, Meng S, Yu H, Yu JZ. Exploring the Effect of Environmental Conditions on Decay Kinetics of Aerosol Unsaturated Fatty Acids: New Insights Gained from Long-Term Ambient Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22322-22331. [PMID: 39620940 DOI: 10.1021/acs.est.4c09808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Unsaturated fatty acids (uFAs) are important constituents of atmospheric organic aerosols, undergoing rapid degradation in the atmosphere that significantly influences aerosol's physical and chemical properties. This study quantified the effective pseudo-first order decay rates of three abundant uFAs-oleic, elaidic, and linoleic acids under real atmospheric conditions using continuous bihourly measurement at a suburban site in Hong Kong over a 9-month period from November 2020 to August 2021. The impact of key environmental parameters, including ozone, initial uFA concentration, relative humidity, and temperature, on the decay rates was rigorously examined. Distinct kinetic behaviors were observed across different temperature ranges (TR1: 5-13 °C; TR2: 13-22 °C; TR3: 22-26 °C; TR4: 26-30 °C). Arrhenius plots of the decay rates revealed contrasting effective activation energies under TR2 and TR4, likely due to different phase states of aerosols and reaction mechanisms under varying environmental conditions. This study extends previous laboratory research by incorporating a wider range of ambient conditions, uncovering the complex interactions between environmental factors and the decay kinetics of uFAs. The findings provide critical insights for accurately modeling the fate of ambient organic aerosols and understanding the intricate impacts of atmospheric conditions on aerosol chemistry.
Collapse
Affiliation(s)
- Qiongqiong Wang
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Shan Wang
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon 999077, China
| | - Shuhui Zhu
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Siyu Meng
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Huan Yu
- Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jian Zhen Yu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Kowloon 999077, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon 999077, China
| |
Collapse
|
2
|
Lum M, Chen K, Ries B, Tian L, Mayorga R, Cui Y, Raeofy N, Cocker D, Zhang H, Bahreini R, Lin YH. Chemical Fate of Particulate Sulfur from Nighttime Oxidation of Thiophene. ACS ES&T AIR 2024; 1:1637-1649. [PMID: 39698104 PMCID: PMC11650645 DOI: 10.1021/acsestair.4c00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
Sulfur-containing volatile organic compounds emitted during wildfire events, such as dimethyl sulfide, are known to form secondary aerosols containing inorganic sulfate (SO4 2-) and surfactant-like organic compounds; however, little is known about the fate of sulfur in other emitted reduced organosulfur species. This study aimed to determine the sulfurous product distribution resulting from the nighttime oxidation of thiophene as a model system. Ion chromatography (IC) and aerosol mass spectrometry (a mini aerosol mass spectrometer, mAMS) were used to constrain the proportions of sulfurous compounds produced under wildfire-relevant conditions ([NO2]/[O3] = 0.1). With constraints from IC, results indicated that the sulfurous particle mass consisted of 30.3 ± 6.6% SO4 2-, while mAMS fractionation attributed 24.5 ± 1.6% of total sulfate signal to SO4 2-, 15.4 ± 1.9% to organosulfates, and 60.1 ± 0.9% to sulfonates. Empirical formulas of organosulfur products were identified as C1-C8 organosulfates and sulfonates using complementary mass spectrometry techniques. This study highlights the nighttime oxidation of thiophene and its derivatives as a source of SO4 2- and particulate organosulfur compounds, which have important implications for the atmospheric sulfur budget and aerosol/droplet physical and chemical properties.
Collapse
Affiliation(s)
- Michael Lum
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Kunpeng Chen
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Bradley Ries
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Linhui Tian
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Raphael Mayorga
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Yumeng Cui
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Nilofar Raeofy
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - David Cocker
- Department
of Chemical and Environmental Engineering, University of California, Riverside, California 92521, United States
| | - Haofei Zhang
- Department
of Chemistry, University of California, Riverside, California 92521, United States
| | - Roya Bahreini
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| | - Ying-Hsuan Lin
- Department
of Environmental Sciences, University of
California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Liu L, Sun J, Shen X, Cheng X, Chen Q, Liu Q, Zhang Y, Zheng J, Wen W, Ma X. Molecular characterization of oxidized organic nitrogen in the polluted urban atmosphere of Beijing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177109. [PMID: 39437922 DOI: 10.1016/j.scitotenv.2024.177109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Oxidized organic nitrogen (OON) serves as a crucial link between volatile organic compounds (VOCs), nitrogen oxides, ozone, and secondary organic aerosol (SOA). However, the comprehension of the molecular composition, formation mechanism, and implications of OON remains limited, particularly in urban environments influenced heavily by anthropogenic emissions. This study presents the field measurements of OON conducted at an urban site in Beijing using chemical ionization mass spectrometry with nitrate as the reagent ion. The molecular characteristics, dominant species, and oxidation states of OON were investigated. Positive matrix factorization analysis disentangled the diverse OON into factors characterized by unique fingerprint features and formation pathways. A modified workflow was used to classify the majority of OON as terpene (3.0 %), isoprene (15.2 %), aliphatic (38.1 %, containing dinitrate), and aromatic (36.0 %, containing aromatic ring retaining) OON. This highlights the significant impact of anthropogenic sources and underscores the need for stringent controls on anthropogenic VOC emissions to mitigate OON formation. Volatility estimates further indicate that aromatic and aliphatic OON, with relatively low volatility, are expected to be the primary contributors to SOA formation by condensation or gas-particle partitioning in urban Beijing. In addition, hazy weather conditions may facilitate multi-generation reactions, leading to the production of large amounts of semi-volatile dinitrate OON and promoting its conversion to SOA.
Collapse
Affiliation(s)
- Lei Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Junying Sun
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China.
| | - Xiaojing Shen
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Xi Cheng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Now at School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, BIC-ESAT and IJRC, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Quan Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yangmei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jing Zheng
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Wei Wen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Ma
- CMA Earth System Modeling and Prediction Centre, Beijing 100081, China
| |
Collapse
|
4
|
Nikkho S, Bai B, Mahrt F, Zaks J, Peng L, Kiland KJ, Liu P, Bertram AK. Secondary Organic Aerosol from Biomass Burning Phenolic Compounds and Nitrate Radicals can be Highly Viscous over a Wide Relative Humidity Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:21702-21715. [PMID: 39602331 DOI: 10.1021/acs.est.4c06235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Biomass burning events, including wildfires, can emit large amounts of phenolic compounds such as guaiacol. These phenolic compounds can undergo oxidation by nitrate radicals (NO3) to form secondary organic aerosol (SOA). Viscosity and hygroscopicity are key properties that affect SOA's role in atmospheric chemistry, air quality, climate and public health. However, these properties have not been quantified for SOA formed from the reaction of phenolic compounds with NO3. We used the poke-flow technique and a quartz crystal microbalance (QCM) to measure the viscosity and hygroscopicity of SOA particles generated from the reaction of NO3 with guaiacol, termed guaiacol-NO3 SOA. The viscosity of this SOA is extremely high (≳5 × 107 Pa s) at RH ≲ 70% and drastically higher than other SOA types previously investigated with the poke-flow technique at RH ≳ 40%. The high viscosity for guaiacol-NO3 SOA can be attributed, at least in part, to the low hygroscopicity measured via the QCM. From the viscosity results, we calculated the mixing times of organic molecules within guaiacol-NO3 SOA. The results suggest that mixing times within this type of SOA exceed 1 h for most tropospheric conditions, with possible implications for predicting the size, mass, and long-range transport of pollutants in phenolic SOA.
Collapse
Affiliation(s)
- Sepehr Nikkho
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Bin Bai
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fabian Mahrt
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232 Villigen, Switzerland
| | - Julia Zaks
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Long Peng
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Kristian J Kiland
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Pengfei Liu
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Allan K Bertram
- Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
5
|
James M, Moschos V, McRee MM, Fiddler MN, Turpin BJ, Surratt JD, Bililign S. Real-time chemical characterization of primary and aged biomass burning aerosols derived from sub-Saharan African biomass fuels in smoldering fires. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2024; 4:1382-1397. [PMID: 39512512 PMCID: PMC11536179 DOI: 10.1039/d4ea00110a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
The influence of biomass burning (BB)-derived organic aerosol (OA) emissions on solar radiation via absorption and scattering is related to their physicochemical properties and can change upon atmospheric aging. We systematically examined the compositionally-resolved mass concentration and production of primary and secondary organic aerosol (POA and SOA, respectively) in the NC A&T University smog chamber facility. Mass spectral profiles of OA measured by the Aerosol Chemical Speciation Monitor (ACSM) revealed the influence of dark- and photo-aging, fuel type, and relative humidity. Unit mass resolution (UMR) mapping, the ratio of the fraction of the OA mass spectrum signal at m/z 55 and 57 (f 55/f 57) vs. the same fraction at m/z 60 (f 60) was used to identify source-specific emission profiles. Furthermore, Positive Matrix Factorization (PMF) analysis was conducted using OA mass spectra, identifying four distinct factors: low-volatility oxygenated OA (LV-OOA), primary biomass-burning OA (BBOA), BB secondary OA (BBSOA), and semi-volatile oxygenated OA (SV-OOA). Data supports a robust four-factor solution, providing insights into the chemical transformations under different experimental conditions, including dark- and photo-aged, humidified, and dark oxidation with NO3 radicals. This work presents the first such laboratory study of African-derived BBOA particles, addressing a gap in global atmospheric chemistry research.
Collapse
Affiliation(s)
- Markie'Sha James
- Department of Applied Sciences and Technology, North Carolina A&T State University Greensboro NC USA
| | - Vaios Moschos
- Department of Physics, North Carolina A&T State University Greensboro NC USA
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill USA
| | - Megan M McRee
- Department of Physics, North Carolina A&T State University Greensboro NC USA
| | - Marc N Fiddler
- Department of Chemistry, North Carolina A&T State University Greensboro NC USA
| | - Barbara J Turpin
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill USA
| | - Jason D Surratt
- Department of Environmental Sciences & Engineering, University of North Carolina at Chapel Hill USA
- Department of Chemistry, University of North Carolina at Chapel Hill USA
| | - Solomon Bililign
- Department of Applied Sciences and Technology, North Carolina A&T State University Greensboro NC USA
- Department of Physics, North Carolina A&T State University Greensboro NC USA
| |
Collapse
|
6
|
Li Y, Ren H, Zhou S, Pei C, Gao M, Liang Y, Ye D, Sun X, Li F, Zhao J, Hang J, Fan S, Fu P. Tower-based profiles of wintertime secondary organic aerosols in the urban boundary layer over Guangzhou. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175326. [PMID: 39117218 DOI: 10.1016/j.scitotenv.2024.175326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/20/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Secondary organic aerosol (SOA) accounts for a large fraction of fine particulate matter (PM2.5), but the lack of vertical observations of SOA in the urban boundary layer (UBL) limits a comprehensive understanding of its sources and formation mechanisms. In this study, PM2.5 samples were simultaneously collected at 3 m, 118 m, and 488 m on the Canton Tower in Guangzhou during winter. Typical SOA tracers, including oxidation products of isoprene (SOAI), monoterpene (SOAM), sesquiterpene (SOAS), and toluene (ASOA), were investigated alongside meteorological parameters and gaseous/particulate pollutants. Total concentrations of SOA tracers showed an increasing trend with height, with daytime levels exceeding nighttime levels. C5-alkene triols and 2-methylglyceric acid displayed a significant increase with height, potentially affected by nighttime chemistry in the residual layer, determining the overall vertical trend of SOAI tracers. Concentrations of later-generation SOAM (SOAM_S) tracers also increased with height, while those of first-generation SOAM (SOAM_F) tracers decreased, indicating relatively aged SOAM in the upper layers. SOAS and ASOA tracers exhibited higher enhancement under polluted conditions, likely impacted by biomass burning and anthropogenic emissions. The yields of SOAI tracers varied with temperature in the vertical profile. The formation of SOAM_F tracers was negatively correlated with relative humidity, liquid water content, and pH, affecting their vertical distributions. The effect of O3 on SOA formation enhanced significantly with height, influenced by air mass transport, and likely contributed to the higher yields of SOA in the upper layer. However, at ground level, SOA formation was primarily driven by high local emissions of both NOx and volatile organic compounds. We also observed the roles of SO2 in SOA generation, particularly at 118 m. This study demonstrates the vertical diurnal characteristics of SOA tracers in the UBL, highlighting the varying effects of meteorological conditions and anthropogenic pollutants on SOA formation at different heights.
Collapse
Affiliation(s)
- Yao Li
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Hong Ren
- Air Environmental Modeling and Pollution Controlling Key Laboratory of Sichuan Higher Education Institute, Chengdu University of Information Technology, Chengdu 610225, China
| | - Shengzhen Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Chenglei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510308, China
| | - Min Gao
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Yuxuan Liang
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Dian Ye
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Xijing Sun
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Fenghua Li
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Jun Zhao
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Shaojia Fan
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Field Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
7
|
Thiagarajan V, Nah T, Xin X. Impacts of atmospheric particulate matter deposition on phytoplankton: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175280. [PMID: 39122032 DOI: 10.1016/j.scitotenv.2024.175280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
In many rapidly urbanizing and industrializing countries, atmospheric pollution causes severe environmental problems and compromises the health of humans and ecosystems. Atmospheric emissions, which encompass gases and particulate matter, can be transported back to the earth's surface through atmospheric deposition. Atmospheric deposition supplies chemical species that can serve as nutrients and/or toxins to aquatic ecosystems, resulting in wide-ranging responses of aquatic organisms. Among the aquatic organisms, phytoplankton is the basis of the aquatic food web and is a key player in global primary production. Atmospheric deposition alters nutrient availability and thus influences phytoplankton species abundance and composition. This review provides a comprehensive overview of the physiological responses of phytoplankton resulting from the atmospheric deposition of trace metals, nitrogen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds in particulate matter into aquatic ecosystems. Knowledge gaps and critical areas for future studies are also discussed.
Collapse
Affiliation(s)
- Vignesh Thiagarajan
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong
| | - Theodora Nah
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong.
| | - Xiaying Xin
- Beaty Water Research Centre, Department of Civil Engineering, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
8
|
Bachelier F, Mascles M, McGillen MR, Amiet JP, Grosselin B, Bazin D, Daële V. Development, optimization and validation of automated volatile organic compound data analysis using an on-line thermal desorption gas chromatograph with dual detection and application to measurements in ambient air. J Chromatogr A 2024; 1735:465327. [PMID: 39232417 DOI: 10.1016/j.chroma.2024.465327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Because of their major role in indoor and outdoor air pollution, even at trace levels, VOCs are of great interest, and their monitoring requires sensitive analytical instruments. Several techniques are commonly used, such as portable sensors, Proton Transfer Reaction Mass Spectrometry (PTR-MS) and Thermal Desorption Gas Chromatography (TD-GC). The latter is widely used off- and on-line with Flame Ionization Detectors (FID) or Mass Spectrometers (MS). Given the large number of molecules detected per chromatogram, the data generated by these monitoring techniques are usually checked and reprocessed manually. This process is extremely time consuming and could result in human error. The challenge is to provide reliable results as quickly as possible. In this study, the performances of an on-line TD-GC system with dual detection FID and MS were tested. The Method Detection Limits (MDL), linearities and accuracies of 60 VOCs (alkanes, aromatics, oxygenated and halogenated) were calculated both for FID and MS detectors. The MDLs and accuracies ranged from 0.006 to 0.618 ppbv and from 77 % to 100 % for FID, and from 0.018 to 0.760 ppbv and from 80 % to 100 % for MS. Both detectors showed good complementarity and allowed the development of two programs to facilitate data analysis. These algorithms were designed to autonomously select optimal results between FID and MS detectors, and were evaluated for outdoor and indoor measurement conditions. Measuring VOCs in field campaigns is challenging, and it is anticipated that these programs could be extended to other types of dual-detector systems or for the comparison of data from different calibrated instruments.
Collapse
Affiliation(s)
- Fanny Bachelier
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE-CNRS), 1C, av. de la Recherche Scientifique CS 50060 - 45071, Orléans Cedex 2, France; Chromatotec, 15 rue d'Artiguelongue, Saint-Antoine 33240, France
| | - Mathilde Mascles
- Chromatotec, 15 rue d'Artiguelongue, Saint-Antoine 33240, France
| | - Max R McGillen
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE-CNRS), 1C, av. de la Recherche Scientifique CS 50060 - 45071, Orléans Cedex 2, France
| | | | - Benoit Grosselin
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE-CNRS), 1C, av. de la Recherche Scientifique CS 50060 - 45071, Orléans Cedex 2, France
| | - Damien Bazin
- Chromatotec, 15 rue d'Artiguelongue, Saint-Antoine 33240, France
| | - Véronique Daële
- Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE-CNRS), 1C, av. de la Recherche Scientifique CS 50060 - 45071, Orléans Cedex 2, France.
| |
Collapse
|
9
|
Fan W, Zhu Z, Liu X, Zhang H, Qiu Y, Yin D. Effect of nitrogen oxides and sulfur oxides to triphenyl phosphate degradation and cytotoxicity on surface of different transition metal salts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174422. [PMID: 38964400 DOI: 10.1016/j.scitotenv.2024.174422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/29/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Nitrogen oxides and sulfur oxides, as the dominant toxic gases in the atmosphere, can induce severe human health problems under the composite pollutant conditions. Currently the effect of nitrogen or sulfur oxides in atmospheric environment to the degradation and cytotoxicity of triphenyl phosphate (TPhP) on atmospheric particle surfaces still remain poorly understood. Hence, laboratory simulation methods were used in this study to investigate the effect and related mechanism. First, particle samples were prepared with the TPhP coated on MnSO4, CuSO4, FeSO4 and Fe2(SO4)3 surface. The results showed that, when nitrogen or sulfur oxides were present, more significant TPhP degradation on all samples can be observed under both light and dark conditions. The results proved nitrogen oxides and sulfur oxides were the vital influence factors to the degradation of TPhP, which mainly promoted the OH generation in the polluted atmosphere. The mechanism study indicated that diphenyl hydrogen phosphate (DPhP) and OH-DPhP were two main stable degradation products. These degradation products originated from the phenoxy bond cleavage and hydroxylation of TPhP caused by hydroxyl radicals. In addition, no TPhP related organosulfates (OSs) or organic nitrates (ON) formation were observed. Regarding the cytotoxicity, all the particles can induce more significant cellular injury and apoptosis of A549 cells, which may be relevant to the adsorbed nitrogen oxides or sulfur oxides on particles surfaces. The superfluous reactive oxygen species (ROS) generation was the possible reason of cytotoxicity. This research can supply a comprehensive understanding of the promoting effect of nitrogen and sulfur oxides to TPhP degradation and the composite cytotoxicity of atmospheric particles.
Collapse
Affiliation(s)
- Wulve Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China.
| | - Xiaochang Liu
- School of Urban and Regional Science, Shanghai University of Finance and Economics, 777 Guoding Road, Shanghai, China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
10
|
Dang AN, Rogalski MH, Peterman DR, Mincher BJ, Mezyk SP. Reactions of the ˙NO 3 radical with nuclear extraction ligands in alkane solution. Phys Chem Chem Phys 2024; 26:23003-23009. [PMID: 39171680 DOI: 10.1039/d4cp00751d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The reactivity of the nitrate radical (NO3˙) with organophosphorus and amidic actinide and lanthanide complexing agents of interest to nuclear solvent extraction applications was measured, resulting in the first-ever reported bimolecular rate constants for this radicals' reactions in dodecane solution. The order of reactivity for neutral organophosphorus compounds showed faster rate constants with increasing electron density on the phosphoryl phosphorus atom, indicating an increasing facility for electron abstraction reactions occurring in addition to H-atom abstraction from the ligand alkane chains. The only acidic organophosphorus compound investigated, HEH[EHP], showed low reactivity with the NO3˙ radical, attributed to its dimerization in this non-polar solvent. Amide ligand reaction rates were faster than for organophosphorus molecules, suggesting more facile H-atom abstraction from carbonyl activated methylene and amyl groups. While all rate constants were slower than the diffusion-limited rate they were still rapid enough to result in significant oxidation of solvent extraction ligands in dodecane solution.
Collapse
Affiliation(s)
- Anh N Dang
- California State University at Long Beach, Department of Chemistry and Biochemistry, 1250 N. Bellflower Blvd., Long Beach, CA, 90840, USA.
| | - Maya H Rogalski
- California State University at Long Beach, Department of Chemistry and Biochemistry, 1250 N. Bellflower Blvd., Long Beach, CA, 90840, USA.
| | - Dean R Peterman
- Idaho National Laboratory, Center for Radiation Chemistry Research, PO Box 1625, Idaho Falls, ID, 83415, USA
| | - Bruce J Mincher
- Idaho National Laboratory, Center for Radiation Chemistry Research, PO Box 1625, Idaho Falls, ID, 83415, USA
| | - Stephen P Mezyk
- California State University at Long Beach, Department of Chemistry and Biochemistry, 1250 N. Bellflower Blvd., Long Beach, CA, 90840, USA.
| |
Collapse
|
11
|
Wang Y, Zhan S, Hu Y, Chen X, Yin S. Understanding the Formation and Growth of New Atmospheric Particles at the Molecular Level through Laboratory Molecular Beam Experiments. Chempluschem 2024; 89:e202400108. [PMID: 38497136 DOI: 10.1002/cplu.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Atmospheric new particle formation (NPF), which exerts comprehensive implications for climate, air quality and human health, has received extensive attention. From molecule to cluster is the initial and most important stage of the nucleation process of atmospheric new particles. However, due to the complexity of the nucleation process and limitations of experimental characterization techniques, there is still a great uncertainty in understanding the nucleation mechanism at the molecular level. Laboratory-based molecular beam methods can experimentally implement the generation and growth of typical atmospheric gas-phase nucleation precursors to nanoscale clusters, characterize the key physical and chemical properties of clusters such as structure and composition, and obtain a series of their physicochemical parameters, including association rate coefficients, electron binding energy, pickup cross section and pickup probability and so on. These parameters can quantitatively illustrate the physicochemical properties of the cluster, and evaluate the effect of different gas phase nucleation precursors on the formation and growth of atmospheric new particles. We review the present literatures on atmospheric cluster formation and reaction employing the experimental method of laboratory molecular beam. The experimental apparatuses were classified and summarized from three aspects of cluster generation, growth and detection processes. Focus of this review is on the properties of nucleation clusters involving different precursor molecules of water, sulfuric acid, nitric acid and NxOy, respectively. We hope this review will provide a deep insight for effects of cluster physicochemical properties on nucleation, and reveal the formation and growth mechanism of atmospheric new particle at the molecular level.
Collapse
Affiliation(s)
- Yadong Wang
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Shiyu Zhan
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Yongjun Hu
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| | - Xi Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, 510650, P. R. China
| | - Shi Yin
- MOE & Guangdong Province Key Laboratory of Laser Life Science & Institute of Laser Life Science & Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
| |
Collapse
|
12
|
Ning C, Gao Y, Sun S, Yang H, Tang W, Wang D. Size-Resolved Molecular Characterization of Water-Soluble Organic Matter in Atmospheric Particulate Matter from Northern China. ENVIRONMENTAL RESEARCH 2024; 258:119436. [PMID: 38897433 DOI: 10.1016/j.envres.2024.119436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Atmospheric particulate matter (PM) affects visibility, climate, biogeochemical cycles and human health. Water-soluble organic matter (WSOM) is an important component of PM. In this study, PM samples with size-resolved measurements at aerodynamic cut-point diameters (Dp) of 0.01-18μm were collected in the rural area of Baoding and the urban area of Dalian, Northern China. Non-targeted analysis was adopted for the characterization of the molecule constitutes of WSOM in different sized particles using Fourier transform-ion cyclotron resonance mass spectrometry. Regardless of the location, the composition of WSOM in Aitken mode particles (aerodynamic diameter < 0.05 μm) was similar. The WSOM in accumulation mode particles (0.05-2 μm) in Baoding was predominantly composed of CHO compounds (84.9%), which were mainly recognized as lignins and lipids species. However, S-containing compounds (64.2%), especially protein and carbohydrates species, accounted for most of the WSOM in the accumulation mode particles in Dalian. The CHO compounds (67.6%-79.7%) contributed the most to the WSOM in coarse mode particles (> 2 μm) from both sites. Potential sources analysis indicated the WSOM in Baoding were mainly derived from biomass burning and oxidation reactions, while the WSOM in Dalian arose from coal combustion, oxidation reactions, and regional transport.
Collapse
Affiliation(s)
- Cuiping Ning
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Yuan Gao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shuai Sun
- Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, China.
| | - Haiming Yang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Wei Tang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| | - Dan Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, China
| |
Collapse
|
13
|
Leung CW, Wang X, Hu D. Characteristics and source apportionment of water-soluble organic nitrogen (WSON) in PM 2.5 in Hong Kong: With focus on amines, urea, and nitroaromatic compounds. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133899. [PMID: 38430595 DOI: 10.1016/j.jhazmat.2024.133899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/05/2024]
Abstract
Water-soluble organic nitrogen (WSON) is ubiquitous in fine particulate matter (PM2.5) and poses health and environmental risks. However, there is limited knowledge regarding its comprehensive speciation and source-specific contributions. Here, we conducted chemical characterization and source apportionment of WSON in 65 PM2.5 samples collected in Hong Kong during a 1-yr period. Using various mass-spectrometry-based techniques, we quantified 22 nitrogen-containing organic compounds (NOCs), including 17 nitroaromatics (NACs), four amines, and urea. The most abundant amine and NACs were dimethylamine and 4-nitrocatechol, respectively. Two secondary (i.e., secondary formation and secondary nitrate) and five primary sources (i.e., sea salt, fugitive dust, marine vessels, vehicle exhaust, and biomass burning) of WSON and these three categories of NOCs were identified. Throughout the year, secondary sources dominated WSON formation (69.0%), while primary emissions had significant contributions to NACs (77.1%), amines (75.9%), and urea (83.7%). Fugitive dust was the leading source of amines and urea, while biomass burning was the main source of NACs. Our multi-linear regression analysis revealed the significant role of sulfate, NO3, nitrate, liquid water content, and particle pH on WSON formation, highlighting the importance of nighttime NO3 processing and heterogeneous and aqueous-phase formation of NOCs in the Hong Kong atmosphere.
Collapse
Affiliation(s)
- Chin Wai Leung
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Xuemei Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China
| | - Di Hu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong Special Administrative Region of China; HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen 518057, PR China.
| |
Collapse
|
14
|
Han H, Du H, Chen S, Xu Y, Ren L, Chen Y, Cai Y, Wang K, Yang X, Fu M, Ding Y, Fu P. Chemodiversity of organic nitrogen emissions from light-duty gasoline vehicles is governed by engine displacements and driving speed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170792. [PMID: 38336060 DOI: 10.1016/j.scitotenv.2024.170792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Organic nitrogen emissions from light-duty gasoline vehicles (LDGVs) is believed to play a pivotal role in atmospheric particulate matter (PM) in urban environments. Here, the characterization of organic nitrogen emitted by LDGVs with varying engine displacements at different speed phases was analyzed using a Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) at molecular level. For the LDGV with small engine displacements, the nitrogen-containing organic (CHON) compounds exhibit higher abundance, molecular weight, oxygen content and aromaticity in the extra-high-speed phase. Conversely, for the LDGV with big engine displacements, more CHON compounds with elevated abundance, molecular weight, oxygen content and aromaticity were observed in the low-speed phase. Our study assumed that the formation of CHON compounds emitted from LDGVs is mainly the oxidation reaction during fuel combustion, so the potential precursor-product pairs related to oxidation process were used to study the degree of combustion reaction. The results show that the highest proportion of oxidation occurs during extra-high-speed phase for LDGV with small engine displacements, and during low-speed phase for LDGV with big engine displacements. These results offer a novel perspective for comprehending the mechanism behind vehicle emissions formation and contribute valuable insights for crafting effective air pollution regulations.
Collapse
Affiliation(s)
- Huixia Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Chinese Research Academy of Environmental Sciences Environmental Technology and Engineering Co., Ltd, China Academy of Environmental Sciences, Beijing 100012, China
| | - Hongxuan Du
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shuang Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yisheng Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Chinese Research Academy of Environmental Sciences Environmental Technology and Engineering Co., Ltd, China Academy of Environmental Sciences, Beijing 100012, China.
| | - Lihong Ren
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Chen
- Chinese Research Academy of Environmental Sciences Environmental Technology and Engineering Co., Ltd, China Academy of Environmental Sciences, Beijing 100012, China
| | - Yeguang Cai
- Chinese Research Academy of Environmental Sciences Environmental Technology and Engineering Co., Ltd, China Academy of Environmental Sciences, Beijing 100012, China
| | - Kexin Wang
- Chinese Research Academy of Environmental Sciences Environmental Technology and Engineering Co., Ltd, China Academy of Environmental Sciences, Beijing 100012, China
| | - Xinping Yang
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Mingliang Fu
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yan Ding
- State Environmental Protection Key Laboratory of Vehicle Emission Control and Simulation, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Lin C, Hu R, Xie P, Zhang G, Liu X, Tong J, Liu W. A three-channel thermal dissociation cavity ring-down spectrometer for simultaneous measurement of ambient total peroxy nitrates, total alkyl nitrates, and NO 2. Talanta 2024; 270:125524. [PMID: 38128285 DOI: 10.1016/j.talanta.2023.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
A newly constructed thermal dissociation cavity ring-down spectrometer (TD-CRDS) for the simultaneous measurement of ambient total peroxy nitrates (ΣPNs, RO2NO2), total alkyl nitrates (ΣANs, RONO2), and NO2 was presented in this work. ΣPNs and ΣANs were detected as NO2 with the CRDS instrument after thermal dissociation. PNs and ANs completely dissociated at 180 °C and 360 °C, with conversion efficiencies of 96 % and 99 %, respectively. The effects of NO2 and NO on measurement in different temperatures and two types of thermal dissociation inlet (TDI) were further explored. The influence of ambient NO2 and NO on PNs and ANs in the improved TDI (TDI-2) was significantly improved. To further enhance the measurement accuracy, the consistency of the observed NO2 in the three channels was tested, which achieved good agreement. The detection limits of the TD-CRDS instrument for NO2, ΣPNs, and ΣANs were determined as 6.5, 6.8, and 8.6 pptv (10 s, 1σ), respectively. Observations of PNs and ANs were conducted in a suburban site in Hefei, China, from September 2-30, 2021, using the TD-CRDS instrument, and the consecutive time series of PNs and ANs were derived, verifying the capability of the TD-CRDS instrument for continuous field observations of ΣPNs and ΣANs.
Collapse
Affiliation(s)
- Chuan Lin
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; University of Science and Technology of China, Hefei, 230027, China
| | - Renzhi Hu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Pinhua Xie
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; University of Science and Technology of China, Hefei, 230027, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Guoxian Zhang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Xiaoyan Liu
- College of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Jinzhao Tong
- University of Science and Technology of China, Hefei, 230027, China
| | - Wenqing Liu
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
16
|
Dong Y, Liu R, Xie L, Pan X, Sun Y, Wu L, Wang Z. Development of an automatic measurement system using atmospheric pressure photoionization ultrahigh-resolution mass spectrometry and application for on-line analysis of particulate matter. J Environ Sci (China) 2024; 138:516-530. [PMID: 38135417 DOI: 10.1016/j.jes.2023.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 12/24/2023]
Abstract
On-line chemical characterization of atmospheric particulate matter (PM) with soft ionization technique and ultrahigh-resolution Mass Spectrometry (UHRMS) provides molecular information of organic constituents in real time. Here we describe the development and application of an automatic measurement system that incorporates PM2.5 sampling, thermal desorption, atmospheric pressure photoionization, and UHRMS analysis. Molecular formulas of detected organic compounds were deducted from the accurate (±10 ppm) molecular weights obtained at a mass resolution of 100,000, allowing the identification of small organic compounds in PM2.5. Detection efficiencies of 28 standard compounds were determined and we found a high sensitivity and selectivity towards organic amines with limits of detection below 10 pg. As a proof of principle, PM2.5 samples collected off-line in winter in the urban area of Beijing were analyzed using the Ionization Module and HRMS of the system. The automatic system was then applied to conduct on-line measurements during the summer time at a time resolution of 2 hr. The detected organic compounds comprised mainly CHON and CHN compounds below 350 m/z. Pronounced seasonal variations in elemental composition were observed with shorter carbon backbones and higher O/C ratios in summer than that in winter. This result is consistent with stronger photochemical reactions and thus a higher oxidation state of organics in summer. Diurnal variation in signal intensity of each formula provides crucial information to reveal its source and formation pathway. In summary, the automatic measurement system serves as an important tool for the on-line characterization and identification of organic species in PM2.5.
Collapse
Affiliation(s)
- Yayuan Dong
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ranran Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Ling Xie
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China
| | - Lin Wu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Institute of Urban Environment, Xiamen 361021, China
| |
Collapse
|
17
|
Zhang J, Shrivastava M, Ma L, Jiang W, Anastasio C, Zhang Q, Zelenyuk A. Modeling Novel Aqueous Particle and Cloud Chemistry Processes of Biomass Burning Phenols and Their Potential to Form Secondary Organic Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3776-3786. [PMID: 38346331 DOI: 10.1021/acs.est.3c07762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Phenols emitted from biomass burning contribute significantly to secondary organic aerosol (SOA) formation through the partitioning of semivolatile products formed from gas-phase chemistry and multiphase chemistry in aerosol liquid water and clouds. The aqueous-phase SOA (aqSOA) formed via hydroxyl radical (•OH), singlet molecular oxygen (1O2*), and triplet excited states of organic compounds (3C*), which oxidize dissolved phenols in the aqueous phase, might play a significant role in the evolution of organic aerosol (OA). However, a quantitative and predictive understanding of aqSOA has been challenging. Here, we develop a stand-alone box model to investigate the formation of SOA from gas-phase •OH chemistry and aqSOA formed by the dissolution of phenols followed by their aqueous-phase reactions with •OH, 1O2*, and 3C* in cloud droplets and aerosol liquid water. We investigate four phenolic compounds, i.e., phenol, guaiacol, syringol, and guaiacyl acetone (GA), which represent some of the key potential sources of aqSOA from biomass burning in clouds. For the same initial precursor organic gas that dissolves in aerosol/cloud liquid water and subsequently reacts with aqueous phase oxidants, we predict that the aqSOA formation potential (defined as aqSOA formed per unit dissolved organic gas concentration) of these phenols is higher than that of isoprene-epoxydiol (IEPOX), a well-known aqSOA precursor. Cloud droplets can dissolve a broader range of soluble phenols compared to aqueous aerosols, since the liquid water contents of aerosols are orders of magnitude smaller than cloud droplets. Our simulations suggest that highly soluble and reactive multifunctional phenols like GA would predominantly undergo cloud chemistry within cloud layers, while gas-phase chemistry is likely to be more important for less soluble phenols. But in the absence of clouds, the condensation of low-volatility products from gas-phase oxidation followed by their reversible partitioning to organic aerosols dominates SOA formation, while the SOA formed through aqueous aerosol chemistry increases with relative humidity (RH), approaching 40% of the sum of gas and aqueous aerosol chemistry at 95% RH for GA. Our model developments of biomass-burning phenols and their aqueous chemistry can be readily implemented in regional and global atmospheric chemistry models to investigate the aqueous aerosol and cloud chemistry of biomass-burning organic gases in the atmosphere.
Collapse
Affiliation(s)
- Jie Zhang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manish Shrivastava
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Lan Ma
- Department of Land, Air and Water Resources, University of California, Davis, California 95616-8627, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Wenqing Jiang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
| | - Cort Anastasio
- Department of Land, Air and Water Resources, University of California, Davis, California 95616-8627, United States
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
| | - Qi Zhang
- Agricultural and Environmental Chemistry Graduate Group, University of California, Davis, California 95616-5270, United States
- Department of Environmental Toxicology, University of California, Davis, California 95616-5270, United States
| | - Alla Zelenyuk
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
18
|
Fernholz C, Baumann F, Lelieveld J, Crowley JN. Kinetics of the reaction of OH with methyl nitrate (223-343 K). Phys Chem Chem Phys 2024; 26:6646-6654. [PMID: 38329232 DOI: 10.1039/d4cp00054d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Rate coefficients (k4) for the reaction of hydroxyl radicals (OH) with methyl nitrate (CH3ONO2) were measured over the temperature range 232-343 K using pulsed laser photolysis to generate OH and pulsed laser-induced fluorescence to detect it in real-time and under pseudo-first-order conditions. In order to optimize the accuracy of the rate coefficients obtained, the concentration of CH3ONO2 (the reactant in excess) was measured on-line by absorption spectroscopy at 213.86 nm for which the absorption cross-section was also measured (σ213.86 = 1.65 ± 0.09 × 10-18 cm2 molecule-1). The temperature-dependent rate coefficient is described by k4(T) = 7.5 × 10-13 exp[(-1034 ± 40)/T] cm3 molecule-1 s-1 with a room temperature rate coefficient of k4(296 ± 2 K) = (2.32 ± 0.12) × 10-14 cm3 molecule-1 s-1 where the uncertainty includes the statistical error of 2σ and an estimation of the potential systematic bias of 5%. This new dataset helps to consolidate the database for this rate coefficient and to reduce uncertainty in the atmospheric lifetime of CH3ONO2. As part of this study, an approximate rate coefficient for the reaction of H-atoms with CH3ONO2 (k9) was also derived at room temperature: k9(298 K) = (1.68 ± 0.45) × 10-13 cm3 molecule-1 s-1.
Collapse
Affiliation(s)
- Christin Fernholz
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.
| | - Fabienne Baumann
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.
| | - John N Crowley
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz 55128, Germany.
| |
Collapse
|
19
|
Chan JK, Parasurama S, Atlas R, Xu R, Jongebloed UA, Alexander B, Langenhan JM, Thornton JA, Riffell JA. Olfaction in the Anthropocene: NO 3 negatively affects floral scent and nocturnal pollination. Science 2024; 383:607-611. [PMID: 38330103 DOI: 10.1126/science.adi0858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024]
Abstract
There is growing concern about sensory pollutants affecting ecological communities. Anthropogenically enhanced oxidants [ozone (O3) and nitrate radicals (NO3)] rapidly degrade floral scents, potentially reducing pollinator attraction to flowers. However, the physiological and behavioral impacts on pollinators and plant fitness are unknown. Using a nocturnal flower-moth system, we found that atmospherically relevant concentrations of NO3 eliminate flower visitation by moths, and the reaction of NO3 with a subset of monoterpenes is what reduces the scent's attractiveness. Global atmospheric models of floral scent oxidation reveal that pollinators in certain urban areas may have a reduced ability to perceive and navigate to flowers. These results illustrate the impact of anthropogenic pollutants on an animal's olfactory ability and indicate that such pollutants may be critical regulators of global pollination.
Collapse
Affiliation(s)
- J K Chan
- Department of Biology, University of Washington, Seattle, WA 98195, USA
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - S Parasurama
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - R Atlas
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - R Xu
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
- Center for Earth System Science, Tsinghua University, Beijing 100084, China
| | - U A Jongebloed
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - B Alexander
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - J M Langenhan
- Department of Chemistry, Seattle University, Seattle, WA 98122, USA
| | - J A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195, USA
| | - J A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Li D, Huang W, Wang D, Wang M, Thornton JA, Caudillo L, Rörup B, Marten R, Scholz W, Finkenzeller H, Marie G, Baltensperger U, Bell DM, Brasseur Z, Curtius J, Dada L, Duplissy J, Gong X, Hansel A, He XC, Hofbauer V, Junninen H, Krechmer JE, Kürten A, Lamkaddam H, Lehtipalo K, Lopez B, Ma Y, Mahfouz NGA, Manninen HE, Mentler B, Perrier S, Petäjä T, Pfeifer J, Philippov M, Schervish M, Schobesberger S, Shen J, Surdu M, Tomaz S, Volkamer R, Wang X, Weber SK, Welti A, Worsnop DR, Wu Y, Yan C, Zauner-Wieczorek M, Kulmala M, Kirkby J, Donahue NM, George C, El-Haddad I, Bianchi F, Riva M. Nitrate Radicals Suppress Biogenic New Particle Formation from Monoterpene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1601-1614. [PMID: 38185880 DOI: 10.1021/acs.est.3c07958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Highly oxygenated organic molecules (HOMs) are a major source of new particles that affect the Earth's climate. HOM production from the oxidation of volatile organic compounds (VOCs) occurs during both the day and night and can lead to new particle formation (NPF). However, NPF involving organic vapors has been reported much more often during the daytime than during nighttime. Here, we show that the nitrate radicals (NO3), which arise predominantly at night, inhibit NPF during the oxidation of monoterpenes based on three lines of observational evidence: NPF experiments in the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN (European Organization for Nuclear Research), radical chemistry experiments using an oxidation flow reactor, and field observations in a wetland that occasionally exhibits nocturnal NPF. Nitrooxy-peroxy radicals formed from NO3 chemistry suppress the production of ultralow-volatility organic compounds (ULVOCs) responsible for biogenic NPF, which are covalently bound peroxy radical (RO2) dimer association products. The ULVOC yield of α-pinene in the presence of NO3 is one-fifth of that resulting from ozone chemistry alone. Even trace amounts of NO3 radicals, at sub-parts per trillion level, suppress the NPF rate by a factor of 4. Ambient observations further confirm that when NO3 chemistry is involved, monoterpene NPF is completely turned off. Our results explain the frequent absence of nocturnal biogenic NPF in monoterpene (α-pinene)-rich environments.
Collapse
Affiliation(s)
- Dandan Li
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Wei Huang
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Dongyu Wang
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Mingyi Wang
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Joel A Thornton
- Department of Atmospheric Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Lucía Caudillo
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Birte Rörup
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Ruby Marten
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Wiebke Scholz
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | - Henning Finkenzeller
- Department of Chemistry & CIRES, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Guillaume Marie
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Urs Baltensperger
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - David M Bell
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Zoé Brasseur
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Joachim Curtius
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Lubna Dada
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Jonathan Duplissy
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Helsinki Institute of Physics (HIP)/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Xianda Gong
- Leibniz Institute for Tropospheric Research, Leipzig 04318, Germany
| | - Armin Hansel
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | - Xu-Cheng He
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Victoria Hofbauer
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Heikki Junninen
- Institute of Physics, University of Tartu, Tartu 50090, Estonia
| | - Jordan E Krechmer
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Andreas Kürten
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Houssni Lamkaddam
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Katrianne Lehtipalo
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Finnish Meteorological Institute, Helsinki 00560, Finland
| | - Brandon Lopez
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Yingge Ma
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai 200233, P. R. China
| | - Naser G A Mahfouz
- Atmospheric and Oceanic Sciences, Princeton University, Princeton, New Jersey 08540, United States
| | - Hanna E Manninen
- CERN, the European Organization for Nuclear Research, Geneve 23 CH-1211, Switzerland
| | - Bernhard Mentler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck 6020, Austria
| | - Sebastien Perrier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Tuukka Petäjä
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Joschka Pfeifer
- CERN, the European Organization for Nuclear Research, Geneve 23 CH-1211, Switzerland
| | - Maxim Philippov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991, Russia
| | - Meredith Schervish
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Jiali Shen
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Mihnea Surdu
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Sophie Tomaz
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Rainer Volkamer
- Department of Chemistry & CIRES, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xinke Wang
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Stefan K Weber
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN, the European Organization for Nuclear Research, Geneve 23 CH-1211, Switzerland
| | - André Welti
- Finnish Meteorological Institute, Helsinki 00560, Finland
| | - Douglas R Worsnop
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
- Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Yusheng Wu
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Chao Yan
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Marcel Zauner-Wieczorek
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
| | - Markku Kulmala
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Jasper Kirkby
- Institute for Atmospheric and Environmental Sciences, Goethe University Frankfurt, Frankfurt am Main 60438, Germany
- CERN, the European Organization for Nuclear Research, Geneve 23 CH-1211, Switzerland
| | - Neil M Donahue
- Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Christian George
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| | - Imad El-Haddad
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Federico Bianchi
- Institute for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Matthieu Riva
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYON, Villeurbanne 69626, France
| |
Collapse
|
21
|
Wang Y, Xi S, Zhao F, Huey LG, Zhu T. Decreasing Production and Potential Urban Explosion of Nighttime Nitrate Radicals amid Emission Reduction Efforts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21306-21312. [PMID: 38064653 PMCID: PMC10734213 DOI: 10.1021/acs.est.3c09259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023]
Abstract
Nighttime oxidation by nitrate (NO3) radicals has important ramifications on nocturnal aerosol formation and hence the climate and human health. Nitrate radicals are produced by the reaction of NO2 and O3. Despite large decreases in anthropogenic emissions of nitrogen oxides (NOx = NO + NO2), a previous study found significant increases in NO3 production (PNO3) from 2014 to 2019 in China, in contrast to decreasing trends in the U.S. and Europe. Using the summer observations from 2014 to 2022, we analyze the interannual variability of nocturnal PNO3 using a systematic framework, in which PNO3 is diagnosed as a function of odd oxygen (Ox = O3 + NO2) and the NO2/O3 ratio. We did not find an increase of PNO3 from 2014 to 2022 in China due to a continuous decrease in the NO2/O3 ratio, although PNO3 is modulated by the variation in Ox. Using in situ observations obtained in Beijing in 2007, we demonstrate the potential for an upsurge resembling an "explosion" in urban nighttime NO3 radicals amid emission reduction efforts.
Collapse
Affiliation(s)
- Yuhang Wang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Shengjun Xi
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Fanghe Zhao
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Lewis Gregory Huey
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tong Zhu
- State
Key Joint Laboratory of Environmental Simulation and Pollution Control,
College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Li Y, Fu TM, Yu JZ, Yu X, Chen Q, Miao R, Zhou Y, Zhang A, Ye J, Yang X, Tao S, Liu H, Yao W. Dissecting the contributions of organic nitrogen aerosols to global atmospheric nitrogen deposition and implications for ecosystems. Natl Sci Rev 2023; 10:nwad244. [PMID: 37954202 PMCID: PMC10634623 DOI: 10.1093/nsr/nwad244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
Atmospheric deposition of particulate organic nitrogen (ONp) is a significant process in the global nitrogen cycle and may be pivotally important for N-limited ecosystems. However, past models largely overlooked the spatial and chemical inhomogeneity of atmospheric ONp and were thus deficient in assessing global ONp impacts. We constructed a comprehensive global model of atmospheric gaseous and particulate organic nitrogen (ON), including the latest knowledge on emissions and secondary formations. Using this model, we simulated global atmospheric ONp abundances consistent with observations. Our estimated global atmospheric ON deposition was 26 Tg N yr-1, predominantly in the form of ONp (23 Tg N yr-1) and mostly from wildfires (37%), oceans (22%) and aqueous productions (17%). Globally, ONp contributed as much as 40% to 80% of the total N deposition downwind of biomass-burning regions. Atmospheric ONp deposition thus constituted the dominant external N supply to the N-limited boreal forests, tundras and the Arctic Ocean, and its importance may be amplified in a future warming climate.
Collapse
Affiliation(s)
- Yumin Li
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen518055, China
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Tzung-May Fu
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen518055, China
- NationalCenter for Applied Mathematics Shenzhen, Shenzhen518055, China
| | - Jian Zhen Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong999077, China
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Xu Yu
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Qi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Ruqian Miao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Yang Zhou
- Frontier Science Center for Deep Ocean Multispheres and Earth System and Physical Oceanography Laboratory, Ocean University of China, Qingdao266100, China
- College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao266100, China
| | - Aoxing Zhang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen518055, China
| | - Jianhuai Ye
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen518055, China
| | - Xin Yang
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen518055, China
| | - Shu Tao
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
- Guangdong Provincial Observation and Research Station for Coastal Atmosphere and Climate of the Greater Bay Area, Southern University of Science and Technology, Shenzhen518055, China
| | - Hongbin Liu
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong999077, China
| | - Weiqi Yao
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
23
|
Liu D, Xu S, Lang Y, Hou S, Wei L, Pan X, Sun Y, Wang Z, Kawamura K, Fu P. Size distributions of molecular markers for biogenic secondary organic aerosol in urban Beijing. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121569. [PMID: 37028792 DOI: 10.1016/j.envpol.2023.121569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/05/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
To understand the source, formation, and seasonality of biogenic secondary organic aerosol (BSOA), a nine-stage cascade impactor was utilized to collect size-segregated particulate samples from April 2017 to January 2018 in Beijing, China. BSOA tracers derived from isoprene, monoterpene, and sesquiterpene were measured with gas chromatography-mass spectrometry. Isoprene and monoterpene SOA tracers exhibited significant seasonal variations, with a summer maximum and a winter minimum. Dominance of 2-methyltetrols (isoprene SOA tracers) with a good correlation with levoglucosan (a biomass burning tracer), which was combined with the detection of methyltartaric acids (possible indicators for aged isoprene) in summer, implies possible biomass burning and long-range transport. In contrast, sesquiterpene SOA tracer (β-caryophyllinic acid) was dominant in winter and was probably associated with the local burning of biomass. Bimodal size distributions were observed for most isoprene SOA tracers, consistent with previous laboratory experiments and field studies showing that they can be formed not only in the aerosol phase but also in the gas phase. Monoterpene SOA tracers cis-pinonic acid and pinic acid showed a coarse-mode peak (5.8-9.0 μm) in four seasons due to their volatile nature. Sesquiterpene SOA tracer β-caryophyllinic acid showed a unimodal pattern with a major fine-mode peak (1.1-2.1 μm), which is linked to local biomass burning. The tracer-yield method was used to quantify the contributions of isoprene, monoterpene, and sesquiterpene to secondary organic carbon (SOC) and SOA. The highest isoprene SOC and SOA concentrations occurred in summer (2.00 μgC m-3 and 4.93 μg m-3, respectively), contributing to 1.61% of OC and 5.22% of PM2.5, respectively. These results suggest that BSOA tracers are promising tracers for understanding the source, formation, and seasonality of BSOA.
Collapse
Affiliation(s)
- Di Liu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Shaofeng Xu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Yunchao Lang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Shengjie Hou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Lianfang Wei
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Xiaole Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Zifa Wang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
| | - Kimitaka Kawamura
- Chubu Institute for Advanced Studies, Chubu University, Kasugai, 487-8501, Japan
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
24
|
Wang Y, Feng Z, Yuan Q, Shang D, Fang Y, Guo S, Wu Z, Zhang C, Gao Y, Yao X, Gao H, Hu M. Environmental factors driving the formation of water-soluble organic aerosols: A comparative study under contrasting atmospheric conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 866:161364. [PMID: 36603612 DOI: 10.1016/j.scitotenv.2022.161364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Water-soluble organic carbon (WSOC), as major fractions of atmospheric aerosols, have gained attention due to their light-absorption properties. To illustrate the sources and key environmental factors driving WSOC formation under different atmospheric conditions, a comparative study was conducted by summarizing the results obtained from five field campaigns at inland (urban, suburban or regional) sites and a coastal site during different seasons. Organic carbon concentrations varied from 8.5 μg/m3 at the summer regional site to 17.5 μg/m3 at the winter urban site, with 46 %- 89 % of the mass as WSOC. Based on correlation analysis, primary combustion emissions were more important in winter than in summer, and secondary formation was an important source of WSOC during winter, summer and autumn. Atmospheric oxidants (NO2, O3), aerosol liquid water (ALW) and ambient RH were important factors influencing the WSOC formation, while their roles varied in different atmospheres. We observed a seasonal transition of atmospheric oxidants dominating the WSOC formation from O3 and NO2-driven conditions in summer to NO2-driven conditions in winter. Elevated ALW or ambient RH generally favor the WSOC formation, while the WSOC dependence of ALW varied among different ALW ranges. As the increasing of ALW or ambient RH, a transition of WSOC formation from "RH/ALW-limited regime" under low-ALW conditions, to "RH/ALW and precursor-driven regime" under medium-ALW/RH, and to "precursor-limited (RH/ALW-excess) regime" were observed for the inland atmospheric conditions. Under the high-RH and ALW conditions in coastal areas, ALW or ambient RH was generally not a limiting factor for WSOC formation.
Collapse
Affiliation(s)
- Yujue Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Zeyu Feng
- Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Qi Yuan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Dongjie Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuan Fang
- Qingdao Eco-environment Monitoring Center, Shandong, China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhijun Wu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chao Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Xiaohong Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Environment and Ecology, Ministry of Education of China, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Sciences, Pilot National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, International Joint Laboratory for Regional Pollution Control, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
25
|
Upshur MA, Bé AG, Luo J, Varelas JG, Geiger FM, Thomson RJ. Organic synthesis in the study of terpene-derived oxidation products in the atmosphere. Nat Prod Rep 2023; 40:890-921. [PMID: 36938683 DOI: 10.1039/d2np00064d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Covering: 1997 up to 2022Volatile biogenic terpenes involved in the formation of secondary organic aerosol (SOA) particles participate in rich atmospheric chemistry that impacts numerous aspects of the earth's complex climate system. Despite the importance of these species, understanding their fate in the atmosphere and determining their atmospherically-relevant properties has been limited by the availability of authentic standards and probe molecules. Advances in synthetic organic chemistry directly aimed at answering these questions have, however, led to exciting discoveries at the interface of chemistry and atmospheric science. Herein we provide a review of the literature regarding the synthesis of commercially unavailable authentic standards used to analyze the composition, properties, and mechanisms of SOA particles in the atmosphere.
Collapse
Affiliation(s)
- Mary Alice Upshur
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Ariana Gray Bé
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jingyi Luo
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Jonathan G Varelas
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Franz M Geiger
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, USA.
| |
Collapse
|
26
|
Liu Q, Sheng J, Wu Y, Ma Z, Sun J, Tian P, Zhao D, Li X, Hu K, Li S, Shen X, Zhang Y, He H, Huang M, Ding D, Liu D. Source characterization of volatile organic compounds in urban Beijing and its links to secondary organic aerosol formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160469. [PMID: 36464057 DOI: 10.1016/j.scitotenv.2022.160469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Volatile organic compounds (VOCs) are precursors for ozone and secondary organic aerosol (SOA) formation, thereby playing a vital role in atmospheric chemistry and urban air quality. To characterize the relationship between VOCs and SOA, organics both in gas and particulate phases were concurrently measured in urban Beijing. The VOCs and organic aerosol (OA) were apportioned into factors with different oxidation levels by applying the factorization analysis on their detailed mass spectra. Six factors of VOCs were identified, including four primary VOCs (PVOC) factors and two secondary VOCs (SVOC) factors. The PVOC factors dominated the total VOCs when the air mass originated in the cleaner northern areas, while SVOC factors dominated for polluted southern air masses. The normalized concentrations of PVOC and primary OA factors showed consistent diurnal variations regardless of air mass directions, owing to the relatively stable local emissions during the experimental period. This contrasted with the secondary factors due to more complex transformation processes. The traffic-related VOCs and solid fuel combustion VOCs negatively correlated with SOA, implying that they may have contributed to the SOA formation through photooxidation. The VOCs in lower oxidation levels were found to have poor correlations with the less oxidized SOA, whereas they correlated strongly to the more oxidized SOA. This implied that the less oxidized SOA may be in a transition state, where its production and loss rates were balanced. These served as products of VOCs oxidation and reactants of more oxidized SOA formation, playing important roles on the VOC to SOA transformation. The identified VOC emission sources and their photochemical production of SOA should be considered in air quality policy planning.
Collapse
Affiliation(s)
- Quan Liu
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Jiujiang Sheng
- Beijing Weather Modification Center, Beijing 100089, China
| | - Yangzhou Wu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhiqiang Ma
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - Junying Sun
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Ping Tian
- Beijing Weather Modification Center, Beijing 100089, China
| | - Delong Zhao
- Beijing Weather Modification Center, Beijing 100089, China
| | - Xia Li
- Beijing Weather Modification Center, Beijing 100089, China
| | - Kang Hu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Siyuan Li
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Xiaojing Shen
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Yangmei Zhang
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing 100081, China
| | - Hui He
- Beijing Weather Modification Center, Beijing 100089, China
| | - Mengyu Huang
- Beijing Weather Modification Center, Beijing 100089, China; Field Experiment Base of Cloud and Precipitation Research in North China, China Meteorological Administration, Beijing 101200, China
| | - Deping Ding
- Beijing Weather Modification Center, Beijing 100089, China; Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources, Beijing 100089, China
| | - Dantong Liu
- Department of Atmospheric Sciences, School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| |
Collapse
|
27
|
Li C, Wang H, Chen X, Zhai T, Ma X, Yang X, Chen S, Li X, Zeng L, Lu K. Observation and modeling of organic nitrates on a suburban site in southwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160287. [PMID: 36410483 DOI: 10.1016/j.scitotenv.2022.160287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Here we report the measurements of two types of organic nitrates (ONs), peroxy nitrates (PNs) and alkyl nitrates (ANs), in Chengdu, China, during summer 2019. The average concentrations of PNs and ANs were 1.3 ± 1.1 ppbv and 0.5 ± 0.3 ppbv during the day, with peaks of 7.7 ppbv and 1.9 ppbv, respectively, which were in the middle and upper end of the reported levels in China. Much higher PNs and ANs concentrations were found during the photochemical pollution period than during the clean period. Box model simulation was capable of reproducing PNs during photochemical pollution episodes but showed overestimation in other periods, which was likely caused by the simplification of PNs sinks. The OH oxidation of aldehydes and ketones was the most important source of the PNs precursors, PAs (peroxyacyl radicals), except for the thermal decomposition of PNs, which was further confirmed by the relative incremental reactivity (RIR) analysis. The model basically reproduced the observed ANs by the refinement of related mechanisms, with isoprene contributing to its formation by 29.2 %. The observed PNs and total oxidants (Ox = NO2 + O3) showed a good positive correlation, with a ratio of PNs to Ox of 0.079, indicating a strong suppression of PNs chemistry to ozone formation. The model quantified the suppression of PNs chemistry on the peak ozone production rate by 21.3 % on average and inhibited ozone formation up to 20 ppbv in total. The RIR analysis suggests that the production of both O3 and ANs was in the VOC-limited regime and highlights the importance of VOC control (especially aromatics) to mitigate photochemical pollution in Chengdu. The study deepens the understanding of photochemical pollution in urban areas of western China and further emphasizes the impacts of ONs chemistry on ozone pollution.
Collapse
Affiliation(s)
- Chunmeng Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Haichao Wang
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| | - Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Tianyu Zhai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, The State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
28
|
Wang Y, Takeuchi M, Wang S, Nizkorodov SA, France S, Eris G, Ng NL. Photolysis of Gas-Phase Atmospherically Relevant Monoterpene-Derived Organic Nitrates. J Phys Chem A 2023; 127:987-999. [PMID: 36651914 DOI: 10.1021/acs.jpca.2c04307] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Organic nitrates (ONs) can impact spatial distribution of reactive nitrogen species and ozone formation in the atmosphere. While photolysis of ONs is known to result in the release of NO2 back to the atmosphere, the photolysis rate constants and mechanisms of monoterpene-derived ONs (MT-ONs) have not been well constrained. We investigated the gas-phase photolysis of three synthetic ONs derived from α-pinene, β-pinene, and d-limonene through chamber experiments. The measured photolysis rate constants ranged from (0.55 ± 0.10) × 10-5 to (2.3 ± 0.80) × 10-5 s-1 under chamber black lights. When extrapolated to solar spectral photon flux at a solar zenith angle of 28.14° in summer, the photolysis rate constants were in the range of (4.1 ± 1.4) × 10-5 to (14 ± 6.7) × 10-5 s-1 (corresponding to lifetimes of 2.0 ± 0.96 to 6.8 ± 2.4 h) and (1.7 ± 0.60) × 10-5 to (8.3 ± 4.0) ×10-5 s-1 (3.3 ± 1.6 to 17 ± 6.0 h lifetimes) by using wavelength-dependent and average quantum yields, respectively. Photolysis mechanisms were proposed based on major products detected during photolysis. A zero-dimensional box model was further employed to simulate the photolysis of α-pinene-derived ON under ambient conditions. We found that more than 99% of α-pinene-derived ON can be converted to inorganic nitrogen within 12 h of irradiation and ozone was formed correspondingly. Together, these findings show that photolysis is an important atmospheric sink for MT-ONs and highlight their role in NOx recycling and ozone chemistry.
Collapse
Affiliation(s)
- Yuchen Wang
- School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Masayuki Takeuchi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Siyuan Wang
- Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, Colorado80309-0216, United States.,National Oceanic and Atmospheric Administration (NOAA), Chemical Sciences Laboratory (CSL), Boulder, Colorado80305, United States
| | - Sergey A Nizkorodov
- Department of Chemistry, University of California, Irvine, California92697, United States
| | - Stefan France
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Gamze Eris
- School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| | - Nga Lee Ng
- School of Chemical and Bimolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States.,School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States.,School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia30332, United States
| |
Collapse
|
29
|
Ma T, Furutani H, Duan F, Kimoto T, Ma Y, Zhu L, Huang T, Toyoda M, He K. Distinct diurnal chemical compositions and formation processes of individual organic-containing particles in Beijing winter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120846. [PMID: 36496065 DOI: 10.1016/j.envpol.2022.120846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Organic aerosols (OA) are major components of fine particulate matter, yet their formation mechanism remains unclear, especially in polluted environments. In this study, we investigated the diurnal chemical compositions and formation processes of OA in carbonaceous particles during winter in Beijing using aerosol time-of-flight mass spectrometry. We found that 84.5% of the measured carbonaceous particles underwent aging processes, characterized by larger diameter and more secondary species compared to fresh carbonaceous particles, and presented different chemical compositions of OA in the daytime and nighttime. During the day, under high O3 concentrations, organosulfates and oligomers existed in the aged carbonaceous particles, which were mixed with a higher signal of nitrate compared with sulfate. At night, under high relative humidity, distinct spectral signatures of hydroxymethanesulfonate and organic nitrogen compounds, and minor signals of other hydroxyalkylsulfonates and high molecular weight organic compounds were present in the aged carbonaceous particles, which were mixed with a higher signal of sulfate compared with nitrate. Our results indicated that photochemistry contributed to OA formation in the daytime, while aqueous chemistry played an important role in OA formation in the nighttime. The findings can help improve the performance of air quality and climate models on OA simulation.
Collapse
Affiliation(s)
- Tao Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Hiroshi Furutani
- Support Center for Scientific Instrument Renovation and Custom Fabrication, Osaka University, Osaka, 560-0043, Japan; Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | - Fengkui Duan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China.
| | - Takashi Kimoto
- Kimoto Electric Co., Ltd., 3-1 Funahashi-cho Tennoji-ku, Osaka 543-0024, Japan
| | - Yongliang Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Lidan Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| | - Tao Huang
- Kimoto Electric Co., Ltd., 3-1 Funahashi-cho Tennoji-ku, Osaka 543-0024, Japan
| | - Michisato Toyoda
- Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Osaka, 560-0043, Japan
| | - Kebin He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Tsinghua University, Beijing 100084, China
| |
Collapse
|
30
|
Graeffe F, Heikkinen L, Garmash O, Äijälä M, Allan J, Feron A, Cirtog M, Petit JE, Bonnaire N, Lambe A, Favez O, Albinet A, Williams LR, Ehn M. Detecting and Characterizing Particulate Organic Nitrates with an Aerodyne Long-ToF Aerosol Mass Spectrometer. ACS EARTH & SPACE CHEMISTRY 2023; 7:230-242. [PMID: 36704177 PMCID: PMC9869397 DOI: 10.1021/acsearthspacechem.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Particulate organic nitrate (pON) can be a major part of secondary organic aerosol (SOA) and is commonly quantified by indirect means from aerosol mass spectrometer (AMS) data. However, pON quantification remains challenging. Here, we set out to quantify and characterize pON in the boreal forest, through direct field observations at Station for Measuring Ecosystem Atmosphere Relationships (SMEAR) II in Hyytiälä, Finland, and targeted single-precursor laboratory studies. We utilized a long time-of-flight AMS (LToF-AMS) for aerosol chemical characterization, with a particular focus to identify C x H y O z N+ ("CHON+") fragments. We estimate that during springtime at SMEAR II, pON (including both the organic and nitrate part) accounts for ∼10% of the particle mass concentration (calculated by the NO+/NO2 + method) and originates mainly from the NO3 radical oxidation of biogenic volatile organic compounds. The majority of the background nitrate aerosol measured is organic. The CHON+ fragment analysis was largely unsuccessful at SMEAR II, mainly due to low concentrations of the few detected fragments. However, our findings may be useful at other sites as we identified 80 unique CHON+ fragments from the laboratory measurements of SOA formed from NO3 radical oxidation of three pON precursors (β-pinene, limonene, and guaiacol). Finally, we noted a significant effect on ion identification during the LToF-AMS high-resolution data processing, resulting in too many ions being fit, depending on whether tungsten ions (W+) were used in the peak width determination. Although this phenomenon may be instrument-specific, we encourage all (LTOF-) AMS users to investigate this effect on their instrument to reduce the possibility of incorrect identifications.
Collapse
Affiliation(s)
- Frans Graeffe
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| | - Liine Heikkinen
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
- Department
of Environmental Science and Bolin Centre for Climate Research, Stockholm University, StockholmSE-10691, Sweden
| | - Olga Garmash
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
- Aerosol
Physics Laboratory, Physics Unit, Tampere
University, Tampere33014, Finland
| | - Mikko Äijälä
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| | - James Allan
- Department
of Earth and Environmental Sciences and National Centre for Atmospheric
Science (NCAS), University of Manchester, Oxford Road, ManchesterM13 9PL, U.K.
| | - Anaïs Feron
- Univ
Paris Est Créteil and Université Paris Cité,
CNRS, LISA, Créteil, ParisF-94010, France
| | - Manuela Cirtog
- Univ
Paris Est Créteil and Université Paris Cité,
CNRS, LISA, Créteil, ParisF-94010, France
| | - Jean-Eudes Petit
- Laboratoire
des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette91191, France
| | - Nicolas Bonnaire
- Laboratoire
des Sciences du Climat et de l’Environnement (LSCE), Gif-sur-Yvette91191, France
| | - Andrew Lambe
- Aerodyne
Research Inc., Billerica, Massachusetts01821, United States
| | - Olivier Favez
- Institut
National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte60550, France
| | - Alexandre Albinet
- Institut
National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte60550, France
| | - Leah R. Williams
- Aerodyne
Research Inc., Billerica, Massachusetts01821, United States
| | - Mikael Ehn
- Institute
for Atmospheric and Earth System Research/Physics, Faculty of Science, University of Helsinki, Helsinki00014, Finland
| |
Collapse
|
31
|
Wang S, Zhao Y, Chan AWH, Yao M, Chen Z, Abbatt JPD. Organic Peroxides in Aerosol: Key Reactive Intermediates for Multiphase Processes in the Atmosphere. Chem Rev 2023; 123:1635-1679. [PMID: 36630720 DOI: 10.1021/acs.chemrev.2c00430] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Organic peroxides (POs) are organic molecules with one or more peroxide (-O-O-) functional groups. POs are commonly regarded as chemically labile termination products from gas-phase radical chemistry and therefore serve as temporary reservoirs for oxidative radicals (HOx and ROx) in the atmosphere. Owing to their ubiquity, active gas-particle partitioning behavior, and reactivity, POs are key reactive intermediates in atmospheric multiphase processes determining the life cycle (formation, growth, and aging), climate, and health impacts of aerosol. However, there remain substantial gaps in the origin, molecular diversity, and fate of POs due to their complex nature and dynamic behavior. Here, we summarize the current understanding on atmospheric POs, with a focus on their identification and quantification, state-of-the-art analytical developments, molecular-level formation mechanisms, multiphase chemical transformation pathways, as well as environmental and health impacts. We find that interactions with SO2 and transition metal ions are generally the fast PO transformation pathways in atmospheric liquid water, with lifetimes estimated to be minutes to hours, while hydrolysis is particularly important for α-substituted hydroperoxides. Meanwhile, photolysis and thermolysis are likely minor sinks for POs. These multiphase PO transformation pathways are distinctly different from their gas-phase fates, such as photolysis and reaction with OH radicals, which highlights the need to understand the multiphase partitioning of POs. By summarizing the current advances and remaining challenges for the investigation of POs, we propose future research priorities regarding their origin, fate, and impacts in the atmosphere.
Collapse
Affiliation(s)
- Shunyao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
| | - Yue Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Arthur W H Chan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, OntarioM5S 3E5, Canada
- School of the Environment, University of Toronto, Toronto, OntarioM5S 3E8, Canada
| | - Min Yao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Zhongming Chen
- State Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing100871, China
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto, Toronto, OntarioM5S 3H6, Canada
| |
Collapse
|
32
|
Karsili TNV, Marchetti B, Lester MI, Ashfold MNR. Electronic Absorption Spectroscopy and Photochemistry of Criegee Intermediates. Photochem Photobiol 2023; 99:4-18. [PMID: 35713380 DOI: 10.1111/php.13665] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 01/26/2023]
Abstract
Interest in Criegee intermediates (CIs), often termed carbonyl oxides, and their role in tropospheric chemistry has grown massively since the demonstration of laboratory-based routes to their formation and characterization in the gas phase. This article reviews current knowledge regarding the electronic spectroscopy of atmospherically relevant CIs like CH2 OO, CH3 CHOO, (CH3 )2 COO and larger CIs like methyl vinyl ketone oxide and methacrolein oxide that are formed in the ozonolysis of isoprene, and of selected conjugated carbene-derived CIs of interest in the synthetic chemistry community. Of the aforementioned atmospherically relevant CIs, all except CH2 OO and (CH3 )2 COO exist in different conformers which, under tropospheric conditions, can display strikingly different thermal loss rates via unimolecular and bimolecular processes. Calculated photolysis rates based on their absorption properties suggest that solar photolysis will rarely be a significant contributor to the total loss rate for any CI under tropospheric conditions. Nonetheless, there is ever-growing interest in the absorption cross sections and primary photochemistry of CIs following excitation to the strongly absorbing 1 ππ* state, and how this varies with CI, with conformer and with excitation wavelength. The later part of this review surveys the photochemical data reported to date, including a range of studies that demonstrate prompt photo-induced fission of the terminal O-O bond, and speculates about possible alternate decay processes that could occur following non-adiabatic coupling to, and dissociation from, highly internally excited levels of the electronic ground state of a CI.
Collapse
Affiliation(s)
| | | | - Marsha I Lester
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA
| | | |
Collapse
|
33
|
Rana MS, Guzman MI. Oxidation of Catechols at the Air-Water Interface by Nitrate Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15437-15448. [PMID: 36318667 PMCID: PMC9670857 DOI: 10.1021/acs.est.2c05640] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/02/2022] [Accepted: 10/14/2022] [Indexed: 05/19/2023]
Abstract
Abundant substituted catechols are emitted to, and created in, the atmosphere during wildfires and anthropogenic combustion and agro-industrial processes. While ozone (O3) and hydroxyl radicals (HO•) efficiently react in a 1 μs contact time with catechols at the air-water interface, the nighttime reactivity dominated by nitrate radicals (NO3) remains unexplored. Herein, online electrospray ionization mass spectrometry (OESI-MS) is used to explore the reaction of NO3(g) with a series of representative catechols (catechol, pyrogallol, 3-methylcatechol, 4-methylcatechol, and 3-methoxycatechol) on the surface of aqueous microdroplets. The work detects the ultrafast generation of nitrocatechol (aromatic) compounds, which are major constituents of atmospheric brown carbon. Two mechanisms are proposed to produce nitrocatechols, one (equivalent to H atom abstraction) following fast electron transfer from the catechols (QH2) to NO3, forming NO3- and QH2•+ that quickly deprotonates into a semiquinone radical (QH•). The second mechanism proceeds via cyclohexadienyl radical intermediates from NO3 attack to the ring. Experiments in the pH range from 4 to 8 showed that the production of nitrocatechols was favored under the most acidic conditions. Mechanistically, the results explain the interfacial production of chromophoric nitrocatechols that modify the absorption properties of tropospheric particles, making them more susceptible to photooxidation, and alter the Earth's radiative forcing.
Collapse
Affiliation(s)
- Md Sohel Rana
- Department of Chemistry, University of Kentucky, Lexington, Kentucky40506, United States
| | - Marcelo I. Guzman
- Department of Chemistry, University of Kentucky, Lexington, Kentucky40506, United States
| |
Collapse
|
34
|
Mayorga R, Xia Y, Zhao Z, Long B, Zhang H. Peroxy Radical Autoxidation and Sequential Oxidation in Organic Nitrate Formation during Limonene Nighttime Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15337-15346. [PMID: 36282674 DOI: 10.1021/acs.est.2c04030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Limonene is an abundant monoterpene released into the atmosphere via biogenic emissions and biomass burning. However, the atmospheric oxidation and secondary organic aerosol (SOA) formation mechanisms of limonene, especially during nighttime, remain largely understudied. In this work, limonene was oxidized synergistically by ozone (O3) and nitrate radicals (NO3) in a flow tube reactor and a continuous flow stirred tank reactor. Upon oxidation, many highly oxidized organic nitrates and nitrooxy peroxy radicals (RO2) were observed in the gas phase within 1 min. Combining quantum chemical calculations with kinetic simulations, we found that the primary nitrooxy RO2 (C10H16NO5) through NO3 addition at the more substituted endocyclic double bond and at the exocyclic double bond (previously considered as minor pathways) can undergo autoxidation with rate constants of around 0.02 and 20 s-1 at 298 K, respectively. These pathways could explain a major portion of the observed highly oxidized organic nitrates. In the SOA, highly oxidized mono- and dinitrates (e.g., C10H17NO7-8 and C10H16,18N2O8-10) make up a significant contribution, highlighting nitrooxy RO2 autoxidation and sequential NO3 oxidation of limonene. The same organic nitrates are also observed in ambient aerosol during biomass burning and nighttime in the southeastern United States. Therefore, the present work provides new insights into the nighttime oxidation of limonene and SOA formation in the atmosphere.
Collapse
Affiliation(s)
- Raphael Mayorga
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Yu Xia
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Zixu Zhao
- Department of Chemistry, University of California, Riverside, California 92507, United States
| | - Bo Long
- School of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Haofei Zhang
- Department of Chemistry, University of California, Riverside, California 92507, United States
| |
Collapse
|
35
|
DeVault MP, Ziola AC, Ziemann PJ. Chemistry of Secondary Organic Aerosol Formation from Reactions of Monoterpenes with OH Radicals in the Presence of NO x. J Phys Chem A 2022; 126:7719-7736. [PMID: 36251783 DOI: 10.1021/acs.jpca.2c04605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The oxidation of volatile organic compounds (VOCs), which are emitted to the atmosphere from natural and anthropogenic sources, leads to the formation of ozone and secondary organic aerosol (SOA) particles that impact air quality and climate. In the study reported here, we investigated the products of the reactions of five biogenic monoterpenes with OH radicals (an important daytime oxidant) under conditions that mimic the chemistry that occurs in polluted air, and developed mechanisms to explain their formation. Experiments were conducted in an environmental chamber, and information on the identity of gas-phase molecular products was obtained using online mass spectrometry, while liquid chromatography and two methods of functional group analysis were used to characterize the SOA composition. The gas-phase products of the reactions were similar to those formed in our previous studies of the reactions of these monoterpenes with NO3 radicals (an important nighttime oxidant), in that they all contained various combinations of nitrate, carbonyl, hydroxyl, ester, and ether groups. But in spite of this, less SOA was formed in OH/NOx reactions and it was composed of monomers, while SOA formed in NO3 radical reactions consisted of acetal and hemiacetal oligomers formed by particle-phase accretion reactions. In addition, it appeared that some monomers underwent particle-phase hydrolysis, whereas oligomers did not. These differences are due primarily to the arrangement of hydroxyl, carbonyl, nitrate, and ether groups in the monomers, which can in turn be explained by differences in OH and NO3 radical reaction mechanisms. The results provide insight into the impact of VOC structure on the amount and composition of SOA formed by atmospheric oxidation, which influence important aerosol properties such as volatility and hygroscopicity.
Collapse
Affiliation(s)
- Marla P DeVault
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States.,Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado80309, United States
| | - Anna C Ziola
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States.,Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado80309, United States
| | - Paul J Ziemann
- Department of Chemistry, University of Colorado, Boulder, Colorado80309, United States.,Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado80309, United States
| |
Collapse
|
36
|
Day DA, Fry JL, Kang HG, Krechmer JE, Ayres BR, Keehan NI, Thompson SL, Hu W, Campuzano-Jost P, Schroder JC, Stark H, DeVault MP, Ziemann PJ, Zarzana KJ, Wild RJ, Dubè WP, Brown SS, Jimenez JL. Secondary Organic Aerosol Mass Yields from NO 3 Oxidation of α-Pinene and Δ-Carene: Effect of RO 2 Radical Fate. J Phys Chem A 2022; 126:7309-7330. [PMID: 36170568 DOI: 10.1021/acs.jpca.2c04419] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dark chamber experiments were conducted to study the SOA formed from the oxidation of α-pinene and Δ-carene under different peroxy radical (RO2) fate regimes: RO2 + NO3, RO2 + RO2, and RO2 + HO2. SOA mass yields from α-pinene oxidation were <1 to ∼25% and strongly dependent on available OA mass up to ∼100 μg m-3. The strong yield dependence of α-pinene oxidation is driven by absorptive partitioning to OA and not by available surface area for condensation. Yields from Δ-carene + NO3 were consistently higher, ranging from ∼10-50% with some dependence on OA for <25 μg m-3. Explicit kinetic modeling including vapor wall losses was conducted to enable comparisons across VOC precursors and RO2 fate regimes and to determine atmospherically relevant yields. Furthermore, SOA yields were similar for each monoterpene across the nominal RO2 + NO3, RO2 + RO2, or RO2 + HO2 regimes; thus, the volatility basis sets (VBS) constructed were independent of the chemical regime. Elemental O/C ratios of ∼0.4-0.6 and nitrate/organic mass ratios of ∼0.15 were observed in the particle phase for both monoterpenes in all regimes, using aerosol mass spectrometer (AMS) measurements. An empirical relationship for estimating particle density using AMS-derived elemental ratios, previously reported in the literature for non-nitrate containing OA, was successfully adapted to organic nitrate-rich SOA. Observations from an NO3- chemical ionization mass spectrometer (NO3-CIMS) suggest that Δ-carene more readily forms low-volatility gas-phase highly oxygenated molecules (HOMs) than α-pinene, which primarily forms volatile and semivolatile species, when reacted with NO3, regardless of RO2 regime. The similar Δ-carene SOA yields across regimes, high O/C ratios, and presence of HOMs, suggest that unimolecular and multistep processes such as alkoxy radical isomerization and decomposition may play a role in the formation of SOA from Δ-carene + NO3. The scarcity of peroxide functional groups (on average, 14% of C10 groups carried a peroxide functional group in one test experiment in the RO2 + RO2 regime) appears to rule out a major role for autoxidation and organic peroxide (ROOH, ROOR) formation. The consistently substantially lower SOA yields observed for α-pinene + NO3 suggest such pathways are less available for this precursor. The marked and robust regime-independent difference in SOA yield from two different precursor monoterpenes suggests that in order to accurately model SOA production in forested regions the chemical mechanism must feature some distinction among different monoterpenes.
Collapse
Affiliation(s)
- Douglas A Day
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Juliane L Fry
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Hyun Gu Kang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Jordan E Krechmer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin R Ayres
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Natalie I Keehan
- Department of Chemistry, Reed College, Portland, Oregon 97202, United States
| | - Samantha L Thompson
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Weiwei Hu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Pedro Campuzano-Jost
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jason C Schroder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Harald Stark
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Aerodyne Research Inc., Billerica, Massachusetts 01821, United States
| | - Marla P DeVault
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Paul J Ziemann
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kyle J Zarzana
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Chemical Sciences Laboratory, National Oceanic & Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Robert J Wild
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Chemical Sciences Laboratory, National Oceanic & Atmospheric Administration, Boulder, Colorado 80305, United States
| | - William P Dubè
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Chemical Sciences Laboratory, National Oceanic & Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Steven S Brown
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Chemical Sciences Laboratory, National Oceanic & Atmospheric Administration, Boulder, Colorado 80305, United States
| | - Jose L Jimenez
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
37
|
Chen J, Wang X, Zhang J, Li M, Li H, Liu Z, Bi Y, Wu D, Yin X, Gu R, Jiang Y, Shan Y, Zhao Y, Xue L, Wang W. Particulate organic nitrates at Mount Tai in winter and spring: Variation characteristics and effects of mountain-valley breezes and elevated emission sources. ENVIRONMENTAL RESEARCH 2022; 212:113182. [PMID: 35367431 DOI: 10.1016/j.envres.2022.113182] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/19/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Particulate organic nitrates, among the major components of secondary organic aerosols and fine particles, play important roles in regional nitrogen cycle, ozone budget, and cloud condensation nuclei formation. However, the pollution characteristics of particulate organic nitrates at mountain areas and the effects of anthropogenic pollutant transport remain poorly understood. In this study, field sampling and measurements were conducted at a high-elevation mountain site over North China Plain in winter and spring. Total five kinds of particulate organic nitrates in fine particles were determined by ultra-high performance liquid chromatography-electrospray mass spectrometry. The average total concentrations of particulate organic nitrates were 330 ± 121 ng m-3 and 247 ± 63 ng m-3 in winter and spring. The monoterpene-derived organic nitrates were the dominant components in both seasons with their contribution higher than 70%, accounting for 1.2 ± 0.8% and 2.0 ± 1.0% in organic aerosols in winter and spring, respectively. The significantly higher levels of particulate organic nitrates in winter than spring was ascribed to the strong effects of mountain-valley breezes and coal combustion plumes. The increasing concentrations of NOx and particulate matters brought by the valley breeze at daytime facilitated the formation of MHN215, OAKN359, and OAHN361, while the rising SO2 abundance and the sulfate aerosols transported by elevated emission sources affected the formation of MDCN247 at nighttime.
Collapse
Affiliation(s)
- Jing Chen
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xinfeng Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Jun Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, China; Laboratory of Atmospheric Chemistry, Paul Scherrer Institute (PSI), 5232, Villigen, Switzerland
| | - Min Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Hongyong Li
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Zhiyi Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yujian Bi
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Di Wu
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Xiangkui Yin
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Rongrong Gu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Ying Jiang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Ye Shan
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yong Zhao
- Taishan National Reference Climatological Station, Tai'an, 271000, China
| | - Likun Xue
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| |
Collapse
|
38
|
Wang H, Ma X, Tan Z, Wang H, Chen X, Chen S, Gao Y, Liu Y, Liu Y, Yang X, Yuan B, Zeng L, Huang C, Lu K, Zhang Y. Anthropogenic monoterpenes aggravating ozone pollution. Natl Sci Rev 2022; 9:nwac103. [PMID: 36128459 PMCID: PMC9477203 DOI: 10.1093/nsr/nwac103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022] Open
Abstract
Monoterpenes have been known to have a critical influence on air quality and climate change through their impact on the formation of fine particles. Here we present field evidence that monoterpene oxidations largely enhanced local ozone production in a regional site in eastern China. The observed monoterpene was most likely from biomass burning rather than biogenic emissions, as indicated by the high correlation with CO at night-time, and the observed ratio of these two species was consistent with previously determined values from biomass burning experiments. Fast monoterpene oxidations were determined experimentally based on direct radical measurements, leading to a daily ozone enhancement of 4-18 parts per billion by volume (ppb), which was 6%-16% of the total ozone production, depending on the speciation of monoterpenes. It demonstrates that the previously overlooked anthropogenic monoterpenes make an important contribution to O3 production in eastern China. The role could possibly be important at similar locations across China and other parts of the world that are characterized by massive emissions, especially where there are high NO x levels. Our results highlight that anthropogenic monoterpenes should be taken into account when proceeding with the coordinated mitigation of O3 and particulate matter pollution.
Collapse
Affiliation(s)
- Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere–Ocean System, Ministry of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Xuefei Ma
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zhaofeng Tan
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich GmbH, Jülich 52428, Germany
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Complex, Shanghai Academy of Environmental Sciences, Shanghai 200223, China
| | - Xiaorui Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yaqin Gao
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Complex, Shanghai Academy of Environmental Sciences, Shanghai 200223, China
| | - Ying Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuhan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinping Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bin Yuan
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Cheng Huang
- State Environmental Protection Key Laboratory of Formation and Prevention of the Urban Air Complex, Shanghai Academy of Environmental Sciences, Shanghai 200223, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, State Environmental Protection Key Laboratory of Atmospheric Ozone Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
39
|
Tolkachev NN, Khodot EN, Lischiner II, Malova OV, Tartakovsky VA, Naudet V. Effect of pressure on the low-temperature reaction of ethylene with N2O4. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
40
|
Fan W, Chen T, Zhu Z, Zhang H, Qiu Y, Yin D. A review of secondary organic aerosols formation focusing on organosulfates and organic nitrates. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128406. [PMID: 35149506 DOI: 10.1016/j.jhazmat.2022.128406] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/27/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Secondary organic aerosols (SOA) are crucial constitution of fine particulate matter (PM), which are mainly derived from photochemical oxidation products of primary organic matter and volatile organic compounds (VOCs), and can induce terrible impacts to human health, air quality and climate change. As we know, organosulfates (OSs) and organic nitrates (ON) are important contributors for SOA formation, which could be possibly produced through various pathways, resulting in extremely complex formation mechanism of SOA. Although plenty of research has been focused on the origins, spatial distribution and formation mechanisms of SOA, a comprehensive and systematic understanding of SOA formation in the atmosphere remains to be detailed explored, especially the most important OSs and ON dedications. Thus, in this review, we systematically summarize the recent research about origins and formation mechanisms of OSs and ON, and especially focus on their contribution to SOA, so as to have a clearer understanding of the origin, spatial distribution and formation principle of SOA. Importantly, we interpret the complex interaction with coexistence effect of SOx and NOx on SOA formation, and emphasize the future insights for SOA research to expect a more comprehensive theory and practice to alleviate SOA burden.
Collapse
Affiliation(s)
- Wulve Fan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Ting Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Zhiliang Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China.
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Safety, Shanghai 200092, China.
| |
Collapse
|
41
|
Tamilvanan V, Subramani M, Subramani D, Ramasamy S. Probing of sequential atmospheric degradation of chlorine radical initiated 1,8-cineole in the presence of O 2 and NO radical with the emission of secondary pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118974. [PMID: 35150796 DOI: 10.1016/j.envpol.2022.118974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
1,8-cineole is an essential monoterpene cyclic ether which is released into the troposphere by many types of plants. It interacts with several atmospheric oxidants because of which is removed from the troposphere via oxidation. The oxidation of 1,8-cineole with Cl radical and the subsequent addition of atmospheric O2 and NO radical with the intermediates are studied using the quantum chemical method. Further, the thermodynamic parameters of 1,8-cineole, such as enthalpy and Gibbs free energy are calculated for all initial and subsequent reactions to facilitate perspicacity. The dissociation and formation of chemical bonds during H abstraction from 1,8-cineole at C2, C6, and C8 sites are described using Mayer bond order analysis. The reaction force analysis demonstrates that the structural rearrangement is dominant with the yield percentages of 85%, 50.80%, and 96.9% over electron reordering with the yield percentages of 15%, 49.19%, and 3.03% respectively in the H abstraction reaction of 1,8-cineole. In the temperature range of 278-350 K, the total CVT/SCT rate constant is calculated to be 2.94 × 10-12 cm3/molecule/sec, which is consistent with the experimentally available value of 2.2 × 10-10 cm3/molecule/sec. At 298 K, branching ratios of rate constant of alkyl radical intermediates I1A, I1B, and I1C are calculated with the percentage of 42.19%, 21.52%, and 36.29% respectively, which suggest that the Cl addition to the C2 site contributes more to the total rate constant rather than the other two sites (C6 and C8). The lifetime of 1,8-cineole is calculated to be 5.2 weeks, implies that the 1,8-cineole may be readily destroyed in the atmosphere after it is released. Secondary pollutants formed from this degradation mechanism may be harmful to the environment and the living things.
Collapse
Affiliation(s)
- Vasuki Tamilvanan
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | | | | | - Shankar Ramasamy
- Department of Physics, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
42
|
Seasonality of Aerosol Sources Calls for Distinct Air Quality Mitigation Strategies. TOXICS 2022; 10:toxics10030121. [PMID: 35324746 PMCID: PMC8953366 DOI: 10.3390/toxics10030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/04/2023]
Abstract
An Aerosol Chemical Speciation Monitor (ACSM) was deployed to investigate the temporal variability of non-refractory particulate matter (NR-PM1) in the coastal city of Galway, Ireland, from February to July 2016. Source apportionment of the organic aerosol (OA) was performed using the newly developed rolling PMF strategy and was compared with the conventional seasonal PMF. Primary OA (POA) factors apportioned by rolling and seasonal PMF were similar. POA factors of hydrocarbon-like OA (HOA), peat, wood, and coal were associated with domestic heating, and with an increased contribution to the OA mass in winter. Even in summer, sporadic heating events occurred with similar diurnal patterns to that in winter. Two oxygenated OA (OOA) factors were resolved, including more-oxygenated OOA and less-oxygenated OOA (i.e., MO-OOA and LO-OOA, accordingly) which were found to be the dominant OA factors during summer. On average, MO-OOA accounted for 62% of OA and was associated with long-range transport in summer. In summer, compared to rolling PMF, the conventional seasonal PMF over-estimated LO-OOA by nearly 100% while it underestimated MO-OOA by 30%. The results from this study show residential heating and long-range transport alternately dominate the submicron aerosol concentrations in this coastal city, requiring different mitigation strategies in different seasons.
Collapse
|
43
|
Ma M, Gao Y, Ding A, Su H, Liao H, Wang S, Wang X, Zhao B, Zhang S, Fu P, Guenther AB, Wang M, Li S, Chu B, Yao X, Gao H. Development and Assessment of a High-Resolution Biogenic Emission Inventory from Urban Green Spaces in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:175-184. [PMID: 34898191 DOI: 10.1021/acs.est.1c06170] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biogenic volatile organic compound (BVOC) emissions have long been known to play vital roles in modulating the formation of ozone and secondary organic aerosols (SOAs). While early studies have evaluated their impact globally or regionally, the BVOC emissions emitted from urban green spaces (denoted as U-BVOC emissions) have been largely ignored primarily due to the failure of low-resolution land cover in resolving such processes, but also because their important contribution to urban BVOCs was previously unrecognized. In this study, by utilizing a recently released high-resolution land cover dataset, we develop the first set of emission inventories of U-BVOCs in China at spatial resolutions as high as 1 km. This new dataset resolved densely distributed U-BVOCs in urban core areas. The U-BVOC emissions in megacities could account for a large fraction of total BVOC emissions, and the good agreement of the interannual variations between the U-BVOC emissions and ozone concentrations over certain regions stresses their potentially crucial role in influencing ozone variations. The newly constructed U-BVOC emission inventory is expected to provide an improved dataset to enable the research community to re-examine the modulation of BVOCs on the formation of ozone, SOA, and atmospheric chemistry in urban environments.
Collapse
Affiliation(s)
- Mingchen Ma
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Yang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Aijun Ding
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Hang Su
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz D-55128, Germany
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hong Liao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Engineering Technology Research Center of Environmental Cleaning Materials, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shuxiao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xuemei Wang
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 510000, China
| | - Bin Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shaoqing Zhang
- Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- International Laboratory for High-Resolution Earth System Model and Prediction (iHESP), Qingdao 266100, China
- Key Laboratory of Physical Oceanography, Institute for Advanced Ocean Study, Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES), College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin 300072, China
| | - Alex B Guenther
- Department of Earth System Science, University of California Irvine, Irvine, California 92697, United States
| | - Minghuai Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Shenshen Li
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaohong Yao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Huiwang Gao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| |
Collapse
|
44
|
Kodros JK, Kaltsonoudis C, Paglione M, Florou K, Jorga S, Vasilakopoulou C, Cirtog M, Cazaunau M, Picquet-Varrault B, Nenes A, Pandis SN. Secondary aerosol formation during the dark oxidation of residential biomass burning emissions. ENVIRONMENTAL SCIENCE: ATMOSPHERES 2022; 2:1221-1236. [PMID: 36277744 PMCID: PMC9476557 DOI: 10.1039/d2ea00031h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
Abstract
Particulate matter from biomass burning emissions affects air quality, ecosystems and climate; however, quantifying these effects requires that the connection between primary emissions and secondary aerosol production is firmly established. We performed atmospheric simulation chamber experiments on the chemical oxidation of residential biomass burning emissions under dark conditions. Biomass burning organic aerosol was found to age under dark conditions, with its oxygen-to-carbon ratio increasing by 7–34% and producing 1–38 μg m−3 of secondary organic aerosol (5–80% increase over the fresh organic aerosol) after 30 min of exposure to NO3 radicals in the chamber (corresponding to 1–3 h of exposure to typical nighttime NO3 radical concentrations in an urban environment). The average mass concentration of SOA formed under dark-oxidation conditions was comparable to the mass concentration formed after 3 h (equivalent to 7–10 h of ambient exposure) under ultraviolet lights (6 μg m−3 or a 47% increase over the emitted organic aerosol concentration). The dark-aging experiments showed a substantial increase in secondary nitrate aerosol (0.12–3.8 μg m−3), 46–100% of which is in the form of organic nitrates. The biomass burning aerosol pH remained practically constant at 2.8 throughout the experiment. This value promotes inorganic nitrate partitioning to the particulate phase, potentially contributing to the buildup of nitrate aerosol in the boundary layer and enhancing long-range transport. These results suggest that oxidation through reactions with the NO3 radical is an additional secondary aerosol formation pathway in biomass burning emission plumes that should be accounted for in atmospheric chemical-transport models. Biomass burning emissions age rapidly in the dark due to oxidation reactions with nitrate radicals.![]()
Collapse
Affiliation(s)
- John K. Kodros
- Institute of Chemical Engineering Sciences, ICE-HT, Patras, 26504, Greece
| | | | - Marco Paglione
- Institute of Atmospheric Sciences and Climate, Italian National Research Council, Bologna 40129, Italy
| | - Kalliopi Florou
- Institute of Chemical Engineering Sciences, ICE-HT, Patras, 26504, Greece
| | - Spiro Jorga
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, 15213, USA
| | - Christina Vasilakopoulou
- Institute of Chemical Engineering Sciences, ICE-HT, Patras, 26504, Greece
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| | - Manuela Cirtog
- LISA, UMR CNRS 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Mathieu Cazaunau
- LISA, UMR CNRS 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Bénédicte Picquet-Varrault
- LISA, UMR CNRS 7583, Université Paris-Est Créteil, Université de Paris, Institut Pierre Simon Laplace (IPSL), Créteil, France
| | - Athanasios Nenes
- Institute of Chemical Engineering Sciences, ICE-HT, Patras, 26504, Greece
- School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology Lausanne, Lausanne 1015, Switzerland
| | - Spyros N. Pandis
- Institute of Chemical Engineering Sciences, ICE-HT, Patras, 26504, Greece
- Univ Paris Est Creteil and Université Paris Cité, CNRS, LISA, F-94010 Créteil, France
| |
Collapse
|
45
|
Hasan G, Valiev RR, Salo VT, Kurtén T. Computational Investigation of the Formation of Peroxide (ROOR) Accretion Products in the OH- and NO 3-Initiated Oxidation of α-Pinene. J Phys Chem A 2021; 125:10632-10639. [PMID: 34881893 PMCID: PMC8713291 DOI: 10.1021/acs.jpca.1c08969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The formation of
accretion products (“dimers”) from
recombination reactions of peroxyl radicals (RO2) is a
key step in the gas-phase generation of low-volatility vapors, leading
to atmospheric aerosol particles. We have recently demonstrated that
this recombination reaction very likely proceeds via an intermediate
complex of two alkoxy radicals (RO···OR′) and
that the accretion product pathway involves an intersystem crossing
(ISC) of this complex from the triplet to the singlet surface. However,
ISC rates have hitherto not been computed for large and chemically
complex RO···OR′ systems actually relevant to
atmospheric aerosol formation. Here, we carry out systematic conformational
sampling and ISC rate calculations on 3(RO···OR′)
clusters formed in the recombination reactions of different diastereomers
of the first-generation peroxyl radicals originating in both OH- and
NO3-initiated reactions of α-pinene, a key biogenic
hydrocarbon for atmospheric aerosol formation. While we find large
differences between the ISC rates of different diastereomer pairs,
all systems have ISC rates of at least 106 s–1, and many have rates exceeding 1010 s–1. Especially the latter value demonstrates that accretion product
formation via the suggested pathway is a competitive process also
for α-pinene-derived RO2 and likely explains the
experimentally observed gas-phase formation of C20 compounds
in α-pinene oxidation.
Collapse
Affiliation(s)
- Galib Hasan
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Rashid R Valiev
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland.,Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russia
| | - Vili-Taneli Salo
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, POB 55, Helsinki FIN-00014, Finland.,Institute for Atmospheric and Earth System Research, Faculty of Science, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
46
|
Kenagy HS, Romer Present PS, Wooldridge PJ, Nault BA, Campuzano-Jost P, Day DA, Jimenez JL, Zare A, Pye HOT, Yu J, Song CH, Blake DR, Woo JH, Kim Y, Cohen RC. Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16326-16338. [PMID: 34870986 PMCID: PMC8759034 DOI: 10.1021/acs.est.1c05521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.
Collapse
Affiliation(s)
- Hannah S Kenagy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Paul S Romer Present
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Paul J Wooldridge
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin A Nault
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Pedro Campuzano-Jost
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Douglas A Day
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Jose L Jimenez
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309, United States
| | - Azimeh Zare
- Department of Chemistry, University of California, Berkeley, California 94710, United States
| | - Havala O T Pye
- Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, Durham, North Carolina 27709, United States
| | - Jinhyeok Yu
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61105, Republic of Korea
| | - Chul H Song
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61105, Republic of Korea
| | - Donald R Blake
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jung-Hun Woo
- Department of Civil and Environmental Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Younha Kim
- Energy, Climate, and Environment (ECE) Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg A-2361, Austria
| | - Ronald C Cohen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Earth & Planetary Sciences, University of California, Berkeley CA 94 720, United States
| |
Collapse
|
47
|
Sharkey AM, Williams BJ, Parker KM. Herbicide Drift from Genetically Engineered Herbicide-Tolerant Crops. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15559-15568. [PMID: 34813302 DOI: 10.1021/acs.est.1c01906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In recent years, off-target herbicide drift has been increasingly reported to lead to damage to nontarget vegetation in the U.S. These reports have coincided with the widespread adoption of genetically modified crops with new herbicide-tolerance traits. Planting crops with these traits may indirectly lead to increased drift both by increasing the use of the corresponding herbicides and by facilitating their use as postemergence herbicides later in the season. While extensive efforts have aimed to reduce herbicide drift, critical uncertainties remain regarding the physiochemical phenomena that drive the entry of herbicides into the atmosphere as well as the atmospheric processes that may influence short- and long-range transport. Resolving these uncertainties will support the development of effective approaches to reduce herbicide drift.
Collapse
Affiliation(s)
- Andromeda M Sharkey
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brent J Williams
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Kimberly M Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
48
|
Shen H, Zhao D, Pullinen I, Kang S, Vereecken L, Fuchs H, Acir IH, Tillmann R, Rohrer F, Wildt J, Kiendler-Scharr A, Wahner A, Mentel TF. Highly Oxygenated Organic Nitrates Formed from NO 3 Radical-Initiated Oxidation of β-Pinene. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:15658-15671. [PMID: 34807606 DOI: 10.1021/acs.est.1c03978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The reactions of biogenic volatile organic compounds (BVOC) with the nitrate radicals (NO3) are major night-time sources of organic nitrates and secondary organic aerosols (SOA) in regions influenced by BVOC and anthropogenic emissions. In this study, the formation of gas-phase highly oxygenated organic molecules-organic nitrates (HOM-ON) from NO3-initiated oxidation of a representative monoterpene, β-pinene, was investigated in the SAPHIR chamber (Simulation of Atmosphere PHotochemistry In a large Reaction chamber). Six monomer (C = 7-10, N = 1-2, O = 6-16) and five accretion product (C = 17-20, N = 2-4, O = 9-22) families were identified and further classified into first- or second-generation products based on their temporal behavior. The time lag observed in the peak concentrations between peroxy radicals containing odd and even number of oxygen atoms, as well as between radicals and their corresponding termination products, provided constraints on the HOM-ON formation mechanism. The HOM-ON formation can be explained by unimolecular or bimolecular reactions of peroxy radicals. A dominant portion of carbonylnitrates in HOM-ON was detected, highlighting the significance of unimolecular termination reactions by intramolecular H-shift for the formation of HOM-ON. A mean molar yield of HOM-ON was estimated to be 4.8% (-2.6%/+5.6%), suggesting significant HOM-ON contributions to the SOA formation.
Collapse
Affiliation(s)
- Hongru Shen
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Defeng Zhao
- Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
- Big Data Institute for Carbon Emission and Environmental Pollution, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), 20 Cuiniao Road, Chenjia Zhen, Chongming, Shanghai 202162, China
| | - Iida Pullinen
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Sungah Kang
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Luc Vereecken
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Hendrik Fuchs
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Ismail-Hakki Acir
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Ralf Tillmann
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Franz Rohrer
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Jürgen Wildt
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Astrid Kiendler-Scharr
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Andreas Wahner
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| | - Thomas F Mentel
- Institute of Energy and Climate Research, IEK-8: Troposphere, Forschungszentrum Jülich, Jülich 52425, Germany
| |
Collapse
|
49
|
DeVault MP, Ziemann PJ. Gas- and Particle-Phase Products and Their Mechanisms of Formation from the Reaction of Δ-3-Carene with NO 3 Radicals. J Phys Chem A 2021; 125:10207-10222. [PMID: 34791878 DOI: 10.1021/acs.jpca.1c07763] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Monoterpenes are a major component of the large quantities of biogenic volatile organic compounds that are emitted to the atmosphere each year. They have a variety of structures, which influences their subsequent reactions with OH radicals, O3, or NO3 radicals and the tendency for these reactions to form secondary organic aerosol (SOA). Here we report the results of an environmental chamber study of the reaction of Δ-3-carene, an abundant unsaturated C10 bicyclic monoterpene, with NO3 radicals, a major nighttime oxidant. Gas- and particle-phase reaction products were analyzed in real time and offline by using mass spectrometry, gas and liquid chromatography, infrared spectroscopy, and derivatization-spectrophotometric methods. The results were used to identify and quantify functional groups and molecular products and to develop gas- and particle-phase reaction mechanisms to explain their formation. Identified gas-phase products were all first-generation ring-retaining and ring-opened compounds (ten C10 and one C9 monomers) with 2-4 functional groups and one C20 dinitrooxydialkyl peroxide dimer. Upon partitioning to the particle phase, the monomers reacted further to form oligomers consisting almost entirely of C20 acetal and hemiacetal dimers, with those formed from a hydroxynitrate and hydroxycarbonyl nitrate comprising more than 50% of the SOA mass. The SOA contained an average of 0.94, 0.71, 0.15, 0.11, 0.16, 0.13, and 7.80 nitrate, carbonyl, hydroxyl, carboxyl, ester, peroxide, and methylene groups per C10 monomer and was formed with a mass yield of 56%. These results have important similarities and differences to those obtained from a previous similar study of the reaction of β-pinene and yield new insights into the effects of monoterpene structure on gas- and particle-phase reactions that can lead to the formation of a large variety of multifunctional products and significant amounts of SOA.
Collapse
Affiliation(s)
- Marla P DeVault
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado 80309, United States
| | - Paul J Ziemann
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States.,Cooperative Institute for Research in Environmental Sciences (CIRES), Boulder, Colorado 80309, United States
| |
Collapse
|
50
|
Wang H, Lu K, Chen S, Li X, Zeng L, Hu M, Zhang Y. Characterizing nitrate radical budget trends in Beijing during 2013-2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148869. [PMID: 34328950 DOI: 10.1016/j.scitotenv.2021.148869] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Nitrate (NO3) radical is an important oxidant in the atmosphere as it regulates the NOx budget and impacts secondary pollutant formation. Here, a long-term observational dataset of NO3-related species at an urban site in Beijing was used to investigate changes in the NO3 budget and their atmospheric impacts during 2013-2019, in this period the Clean Air Actions Plan was carried out in China. We found that (1) changes in NO3 precursors (NO2 and O3) led to a significant increase in NO3 formation in the surface layer in winter but a decrease in summer; (2) a reduction in NOx promoted thermal equilibrium, favoring the formation of NO3 rather than dinitrogen pentoxide (N2O5). The simultaneous decrease in PM2.5, during these years, further weakened the N2O5 heterogeneous uptake; (3) a box model simulation revealed that both the reactions of NO3 with volatile organic compounds (VOC) and N2O5 uptake were weakened in summer, implying that the policy actions implemented help to moderate secondary aerosol formation caused by NO3 and N2O5 chemistry in summer; and (4) during winter, both NO3 + VOC and N2O5 uptake were enhanced. Specifically, for the N2O5 uptake, the rapid increase in NO3 production, or to some extent, NO3 oxidation capacity, far outweighed the negative shift effect, leading to a net enhancement of N2O5 uptake in winter, which indicates that the action policy implemented led to an adverse effect on particulate nitrate formation via N2O5 uptake in winter. This may explain the persistent winter particulate nitrate pollution in recent years. Our results highlight the systematic changes in the NO3 budget between 2013 and 2019 in Beijing, which subsequently affect secondary aerosol formation in different seasons.
Collapse
Affiliation(s)
- Haichao Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; School of Atmospheric Sciences, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Observation and Research Station for Climate Environment and Air Quality Change in the Pearl River Estuary, Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Keding Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| | - Shiyi Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xin Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Limin Zeng
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanhang Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|