1
|
Gerbaud G, Barbat B, Tribout M, Etienne E, Belle V, Douzi B, Voulhoux R, Bonucci A. Refining the Dynamic Network of T2SS Endopilus Tip Heterocomplex Combining cw-EPR and Nitroxide-Gd III Distance Measurements. Chembiochem 2023; 24:e202300099. [PMID: 36999435 DOI: 10.1002/cbic.202300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
The type 2 secretion system (T2SS) is a bacterial nanomachine composed of an inner membrane assembly platform, an outer membrane pore and a dynamic endopilus. T2SS endopili are organized into a homo-multimeric body formed by the major pilin capped by a heterocomplex of four minor pilins. The first model of the T2SS endopilus was recently released, even if structural dynamics insights are still required to decipher the role of each protein in the full tetrameric complex. Here, we applied continuous-wave and pulse EPR spectroscopy using nitroxide-gadolinium orthogonal labelling strategies to investigate the hetero-oligomeric assembly of the minor pilins. Overall, our data are in line with the endopilus model even if they evidenced conformational flexibility and alternative orientations at local scale of specific regions of minor pilins. The integration of different labelling strategies and EPR experiments demonstrates the pertinence of this approach to investigate protein-protein interactions in such multiprotein heterocomplexes.
Collapse
Affiliation(s)
- Guillaume Gerbaud
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Brice Barbat
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Mathilde Tribout
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Emilien Etienne
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Valérie Belle
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Badreddine Douzi
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
- Present address: INRAE, DynAMic, Université de Lorraine, 54000, Nancy, France
| | - Romé Voulhoux
- LCB-Laboratoire de Chimie Bactérienne, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| | - Alessio Bonucci
- BIP-Bioénérgetique et Ingénierie es Protéines, IMM, Aix Marseille Université, CNRS, 13009, Marseille, France
| |
Collapse
|
2
|
Ketter S, Joseph B. Gd 3+-Trityl-Nitroxide Triple Labeling and Distance Measurements in the Heterooligomeric Cobalamin Transport Complex in the Native Lipid Bilayers. J Am Chem Soc 2023; 145:960-966. [PMID: 36599418 PMCID: PMC9853854 DOI: 10.1021/jacs.2c10080] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 01/06/2023]
Abstract
Increased efforts are being made for observing proteins in their native environments. Pulsed electron-electron double resonance spectroscopy (PELDOR, also known as DEER) is a powerful tool for this purpose. Conventionally, PELDOR employs an identical spin pair, which limits the output to a single distance for monomeric samples. Here, we show that the Gd3+-trityl-nitroxide (NO) three-spin system is a versatile tool to study heterooligomeric membrane protein complexes, even within their native membrane. This allowed for an independent determination of four different distances (Gd3+-trityl, Gd3+-NO, trityl-NO, and Gd3+-Gd3+) within the same sample. We demonstrate the feasibility of this approach by observing sequential ligand binding and the dynamics of complex formation in the cobalamin transport system involving four components (cobalamin, BtuB, TonB, and BtuF). Our results reveal that TonB binding alone is sufficient to release cobalamin from BtuB in the native asymmetric bilayers. This approach provides a potential tool for the structural and quantitative analysis of dynamic protein-protein interactions in oligomeric complexes, even within their native surroundings.
Collapse
Affiliation(s)
- Sophie Ketter
- Institute of Biophysics,
Department of Physics and Centre for Biomolecular Magnetic Resonance
(BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt 60438, Germany
| | - Benesh Joseph
- Institute of Biophysics,
Department of Physics and Centre for Biomolecular Magnetic Resonance
(BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, Frankfurt 60438, Germany
| |
Collapse
|
3
|
Teucher M, Sidabras JW, Schnegg A. Milliwatt three- and four-pulse double electron electron resonance for protein structure determination. Phys Chem Chem Phys 2022; 24:12528-12540. [PMID: 35579184 DOI: 10.1039/d1cp05508a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) experiments for protein structure determination using double electron-electron resonance (DEER) spectroscopy rely on high-power microwave amplifiers (>300 W) to create the short pulse lengths needed to excite a sizable portion of the spectrum. The recently introduced self-resonant microhelix combines a high B1 conversion efficiency with an intrinsically large bandwidth (low Q-value) and a high absolute sensitivity. We report dead times in 3-pulse DEER experiments as low as 14 ± 2 ns achieved using less than 1 W of power at X-band (nominally 9.5 GHz) for experiments on a molecular ruler and a T4 lysozyme sample for concentrations down to 100 μM. These low-power experiments were performed using an active volume 120 times smaller than that of a standard pulse EPR resonator, while only a 11-fold decrease in the signal-to-noise ratio was observed. Small build sizes, as realized with the microhelix, give access to volume-limited samples, while shorter dead times allow the investigation of fast relaxing spin species. With the significantly reduced dead times, the 3-pulse DEER experiment can be revisited. Here, we show experimentally that 3-pulse DEER offers superior sensitivity over 4-pulse DEER. We assert that the microhelix paves the road for low-cost benchtop X-band pulse EPR spectrometers by eliminating the need for high-power amplifiers, accelerating the adoption of pulse EPR to a broader community.
Collapse
Affiliation(s)
- Markus Teucher
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stift-straße 34-36, Mülheim an der Ruhr, 45470, Germany.
| | - Jason W Sidabras
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stift-straße 34-36, Mülheim an der Ruhr, 45470, Germany.
| | - Alexander Schnegg
- EPR Research Group, Max Planck Institute for Chemical Energy Conversion, Stift-straße 34-36, Mülheim an der Ruhr, 45470, Germany.
| |
Collapse
|
4
|
Abstract
Different types of spin labels are currently available for structural studies of biomolecules both in vitro and in cells using Electron Paramagnetic Resonance (EPR) and pulse dipolar spectroscopy (PDS). Each type of label has its own advantages and disadvantages, that will be addressed in this chapter. The spectroscopically distinct properties of the labels have fostered new applications of PDS aimed to simultaneously extract multiple inter-label distances on the same sample. In fact, combining different labels and choosing the optimal strategy to address their inter-label distances can increase the information content per sample, and this is pivotal to better characterize complex multi-component biomolecular systems. In this review, we provide a brief background of the spectroscopic properties of the four most common orthogonal spin labels for PDS measurements and focus on the various methods at disposal to extract homo- and hetero-label distances in proteins. We also devote a section to possible artifacts arising from channel crosstalk and provide few examples of applications in structural biology.
Collapse
|
5
|
Bahrenberg T, Yardeni EH, Feintuch A, Bibi E, Goldfarb D. Substrate binding in the multidrug transporter MdfA in detergent solution and in lipid nanodiscs. Biophys J 2021; 120:1984-1993. [PMID: 33771471 PMCID: PMC8204392 DOI: 10.1016/j.bpj.2021.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022] Open
Abstract
MdfA from Escherichia coli is a prototypical secondary multi-drug (Mdr) transporter that exchanges drugs for protons. MdfA-mediated drug efflux is driven by the proton gradient and enabled by conformational changes that accompany the recruitment of drugs and their release. In this work, we applied distance measurements by W-band double electron-electron resonance (DEER) spectroscopy to explore the binding of mito-TEMPO, a nitroxide-labeled substrate analog, to Gd(III)-labeled MdfA. The choice of Gd(III)-nitroxide DEER enabled measurements in the presence of excess of mito-TEMPO, which has a relatively low affinity to MdfA. Distance measurements between mito-TEMPO and MdfA labeled at the periplasmic edges of either of three selected transmembrane helices (TM3101, TM5168, and TM9310) revealed rather similar distance distributions in detergent micelles (n-dodecyl-β-d-maltopyranoside, DDM)) and in lipid nanodiscs (ND). By grafting the predicted positions of the Gd(III) tag on the inward-facing (If) crystal structure, we looked for binding positions that reproduced the maxima of the distance distributions. The results show that the location of the mito-TEMPO nitroxide in DDM-solubilized or ND-reconstituted MdfA is similar (only 0.4 nm apart). In both cases, we located the nitroxide moiety near the ligand binding pocket in the If structure. However, according to the DEER-derived position, the substrate clashes with TM11, suggesting that for mito-TEMPO-bound MdfA, TM11 should move relative to the If structure. Additional DEER studies with MdfA labeled with Gd(III) at two sites revealed that TM9 also dislocates upon substrate binding. Together with our previous reports, this study demonstrates the utility of Gd(III)-Gd(III) and Gd(III)-nitroxide DEER measurements for studying the conformational behavior of transporters.
Collapse
Affiliation(s)
- Thorsten Bahrenberg
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eliane Hadas Yardeni
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Akiva Feintuch
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Bibi
- Departments of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| | - Daniella Goldfarb
- Departments of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|