1
|
Allen MC, Karplus PA, Mehl RA, Cooley RB. Genetic Encoding of Phosphorylated Amino Acids into Proteins. Chem Rev 2024; 124:6592-6642. [PMID: 38691379 PMCID: PMC11658404 DOI: 10.1021/acs.chemrev.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.
Collapse
Affiliation(s)
- Michael C. Allen
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - P. Andrew Karplus
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Ryan A. Mehl
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| | - Richard B. Cooley
- Oregon State University, GCE4All Research Center, Department of Biochemistry and Biophysics, 2011 Agricultural and Life Sciences, Corvallis, OR 97331 USA
| |
Collapse
|
2
|
Vesely CH, Reardon PN, Yu Z, Barbar E, Mehl RA, Cooley RB. Accessing isotopically labeled proteins containing genetically encoded phosphoserine for NMR with optimized expression conditions. J Biol Chem 2022; 298:102613. [PMID: 36265582 PMCID: PMC9678770 DOI: 10.1016/j.jbc.2022.102613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Phosphoserine (pSer) sites are primarily located within disordered protein regions, making it difficult to experimentally ascertain their effects on protein structure and function. Therefore, the production of 15N- (and 13C)-labeled proteins with site-specifically encoded pSer for NMR studies is essential to uncover molecular mechanisms of protein regulation by phosphorylation. While genetic code expansion technologies for the translational installation of pSer in Escherichia coli are well established and offer a powerful strategy to produce site-specifically phosphorylated proteins, methodologies to adapt them to minimal or isotope-enriched media have not been described. This shortcoming exists because pSer genetic code expansion expression hosts require the genomic ΔserB mutation, which increases pSer bioavailability but also imposes serine auxotrophy, preventing growth in minimal media used for isotopic labeling of recombinant proteins. Here, by testing different media supplements, we restored normal BL21(DE3) ΔserB growth in labeling media but subsequently observed an increase of phosphatase activity and mis-incorporation not typically seen in standard rich media. After rounds of optimization and adaption of a high-density culture protocol, we were able to obtain ≥10 mg/L homogenously labeled, phosphorylated superfolder GFP. To demonstrate the utility of this method, we also produced the intrinsically disordered serine/arginine-rich region of the SARS-CoV-2 Nucleocapsid protein labeled with 15N and pSer at the key site S188 and observed the resulting peak shift due to phosphorylation by 2D and 3D heteronuclear single quantum correlation analyses. We propose this cost-effective methodology will pave the way for more routine access to pSer-enriched proteins for 2D and 3D NMR analyses.
Collapse
Affiliation(s)
- Cat Hoang Vesely
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Patrick N Reardon
- Oregon State University NMR Facility, Oregon State University, Corvallis, Oregon, USA
| | - Zhen Yu
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Ryan A Mehl
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Richard B Cooley
- GCE4All Research Center, Oregon State University, Corvallis, Oregon, USA; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA.
| |
Collapse
|
3
|
Mekkattu Tharayil S, Mahawaththa MC, Feintuch A, Maleckis A, Ullrich S, Morewood R, Maxwell MJ, Huber T, Nitsche C, Goldfarb D, Otting G. Site-selective generation of lanthanoid binding sites on proteins using 4-fluoro-2,6-dicyanopyridine. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2022; 3:169-182. [PMID: 37904871 PMCID: PMC10539774 DOI: 10.5194/mr-3-169-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2023]
Abstract
The paramagnetism of a lanthanoid tag site-specifically installed on a protein provides a rich source of structural information accessible by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy. Here we report a lanthanoid tag for selective reaction with cysteine or selenocysteine with formation of a (seleno)thioether bond and a short tether between the lanthanoid ion and the protein backbone. The tag is assembled on the protein in three steps, comprising (i) reaction with 4-fluoro-2,6-dicyanopyridine (FDCP); (ii) reaction of the cyano groups with α -cysteine, penicillamine or β -cysteine to complete the lanthanoid chelating moiety; and (iii) titration with a lanthanoid ion. FDCP reacts much faster with selenocysteine than cysteine, opening a route for selective tagging in the presence of solvent-exposed cysteine residues. Loaded with Tb 3 + and Tm 3 + ions, pseudocontact shifts were observed in protein NMR spectra, confirming that the tag delivers good immobilisation of the lanthanoid ion relative to the protein, which was also manifested in residual dipolar couplings. Completion of the tag with different 1,2-aminothiol compounds resulted in different magnetic susceptibility tensors. In addition, the tag proved suitable for measuring distance distributions in double electron-electron resonance experiments after titration with Gd 3 + ions.
Collapse
Affiliation(s)
| | - Mithun C. Mahawaththa
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Akiva Feintuch
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ansis Maleckis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Richard Morewood
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Michael J. Maxwell
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
4
|
Chen JL, Li B, Ma B, Su XC. Distinct stereospecific effect of chiral tether between a tag and protein on the rigidity of paramagnetic tag. JOURNAL OF BIOMOLECULAR NMR 2022; 76:107-119. [PMID: 35841475 DOI: 10.1007/s10858-022-00399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Flexibility between the paramagnetic tag and its protein conjugates is a common yet unresolved issue in the applications of paramagnetic NMR spectroscopy in biological systems. The flexibility greatly attenuates the magnetic anisotropy and compromises paramagnetic effects especially for pseudocontact shift and residual dipolar couplings. Great efforts have been made to improve the rigidity of paramagnetic tag in the protein conjugates, however, the effect of local environment vicinal to the protein ligation site on the paramagnetic effects remains poorly understood. In the present work, the stereospecific effect of chiral tether between the protein and a tag on the paramagnetic effects produced by the tag attached via a D- and L-type linker between the protein and paramagnetic metal chelating moiety was assessed. The remarkable chiral effect of the D- and L-type tether between the tag and the protein on the rigidity of paramagnetic tag is disclosed in a number of protein-tag-Ln complexes. The chiral tether formed between the D-type tag and L-type protein surface minimizes the effect of the local environment surrounding the ligation site on the averaging of paramagnetic tag, which is helpful to preserve the rigidity of a paramagnetic tag in the protein conjugates.
Collapse
Affiliation(s)
- Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Bo Ma
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Ravera E, Gigli L, Fiorucci L, Luchinat C, Parigi G. The evolution of paramagnetic NMR as a tool in structural biology. Phys Chem Chem Phys 2022; 24:17397-17416. [PMID: 35849063 DOI: 10.1039/d2cp01838a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Paramagnetic NMR data contain extremely accurate long-range information on metalloprotein structures and, when used in the frame of integrative structural biology approaches, they allow for the retrieval of structural details to a resolution that is not achievable using other techniques. Paramagnetic data thus represent an extremely powerful tool to refine protein models in solution, especially when coupled to X-ray or cryoelectron microscopy data, to monitor the formation of complexes and determine the relative arrangements of their components, and to highlight the presence of conformational heterogeneity. More recently, theoretical and computational advancements in quantum chemical calculations of paramagnetic NMR observables are progressively opening new routes in structural biology, because they allow for the determination of the structure within the coordination sphere of the metal center, thus acting as a loupe on sites that are difficult to observe but very important for protein function.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Lucia Gigli
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Letizia Fiorucci
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, 50019, Italy.,Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
6
|
Parigi G, Ravera E, Luchinat C. Paramagnetic effects in NMR for protein structures and ensembles: Studies of metalloproteins. Curr Opin Struct Biol 2022; 74:102386. [DOI: 10.1016/j.sbi.2022.102386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 11/28/2022]
|
7
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
8
|
Herath ID, Breen C, Hewitt SH, Berki TR, Kassir AF, Dodson C, Judd M, Jabar S, Cox N, Otting G, Butler SJ. A Chiral Lanthanide Tag for Stable and Rigid Attachment to Single Cysteine Residues in Proteins for NMR, EPR and Time-Resolved Luminescence Studies. Chemistry 2021; 27:13009-13023. [PMID: 34152643 PMCID: PMC8518945 DOI: 10.1002/chem.202101143] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/12/2022]
Abstract
A lanthanide-binding tag site-specifically attached to a protein presents a tool to probe the protein by multiple spectroscopic techniques, including nuclear magnetic resonance, electron paramagnetic resonance and time-resolved luminescence spectroscopy. Here a new stable chiral LnIII tag, referred to as C12, is presented for spontaneous and quantitative reaction with a cysteine residue to generate a stable thioether bond. The synthetic protocol of the tag is relatively straightforward, and the tag is stable for storage and shipping. It displays greatly enhanced reactivity towards selenocysteine, opening a route towards selective tagging of selenocysteine in proteins containing cysteine residues. Loaded with TbIII or TmIII ions, the C12 tag readily generates pseudocontact shifts (PCS) in protein NMR spectra. It produces a relatively rigid tether between lanthanide and protein, which is beneficial for interpretation of the PCSs by single magnetic susceptibility anisotropy tensors, and it is suitable for measuring distance distributions in double electron-electron resonance experiments. Upon reaction with cysteine or other thiol compounds, the TbIII complex exhibits a 100-fold enhancement in luminescence quantum yield, affording a highly sensitive turn-on luminescence probe for time-resolved FRET assays and enzyme reaction monitoring.
Collapse
Affiliation(s)
- Iresha D. Herath
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Colum Breen
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Sarah H. Hewitt
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Thomas R. Berki
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Ahmad F. Kassir
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| | - Charlotte Dodson
- Department of Pharmacy & PharmacologyUniversity of Bath Claverton DownBathBA2 7AYUK
| | - Martyna Judd
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Shereen Jabar
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Nicholas Cox
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Gottfried Otting
- Research School of ChemistryThe Australian National UniversityCanberraACT 2605Australia
| | - Stephen J. Butler
- Department of ChemistryLoughborough UniversityEpinal WayLoughboroughLE11 3TUUK
| |
Collapse
|