1
|
Praud C, Ribay V, Dey A, Charrier B, Mandral J, Farjon J, Dumez JN, Giraudeau P. Optimization of heteronuclear ultrafast 2D NMR for the study of complex mixtures hyperpolarized by dynamic nuclear polarization. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:6209-6219. [PMID: 37942549 DOI: 10.1039/d3ay01681a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Hyperpolarized 13C NMR at natural abundance, based on dissolution dynamic nuclear polarization (d-DNP), provides rich, sensitive and repeatable 13C NMR fingerprints of complex mixtures. However, the sensitivity enhancement is associated with challenges such as peak overlap and the difficulty to assign hyperpolarized 13C signals. Ultrafast (UF) 2D NMR spectroscopy makes it possible to record heteronuclear 2D maps of d-DNP hyperpolarized samples. Heteronuclear UF 2D NMR can provide correlation peaks that link quaternary carbons and protons through long-range scalar couplings. Here, we report the analytical assessment of an optimized UF long-range HETCOR pulse sequence, applied to the detection of metabolic mixtures at natural abundance and hyperpolarized by d-DNP, based on repeatability and sensitivity considerations. We show that metabolite-dependent limits of quantification in the range of 1-50 mM (in the sample before dissolution) can be achieved, with a repeatability close to 10% and a very good linearity. We provide a detailed comparison of such analytical performance in two different dissolution solvents, D2O and MeOD. The reported pulse sequence appears as an useful analytical tool to facilitate the assignment and integration of metabolite signals in hyperpolarized complex mixtures.
Collapse
Affiliation(s)
- Clément Praud
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Victor Ribay
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Arnab Dey
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Benoît Charrier
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Joris Mandral
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | - Jonathan Farjon
- Nantes Université, CNRS, CEISAM, UMR 6230, F-44000 Nantes, France.
| | | | | |
Collapse
|
2
|
Dey A, Charrier B, Ribay V, Dumez JN, Giraudeau P. Hyperpolarized 1H and 13C NMR Spectroscopy in a Single Experiment for Metabolomics. Anal Chem 2023; 95:16861-16867. [PMID: 37947414 DOI: 10.1021/acs.analchem.3c02614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The application of NMR spectroscopy to complex mixture analysis and, in particular, to metabolomics is limited by the low sensitivity of NMR. We recently showed that dissolution dynamic nuclear polarization (d-DNP) could enhance the sensitivity of 13C NMR for complex metabolite mixtures, leading to the detection of highly sensitive 13C NMR fingerprints of complex samples such as plant extracts or urine. While such experiments provide heteronuclear spectra, which are complementary to conventional NMR, hyperpolarized 1H NMR spectra would also be highly useful, with improved limits of detection and compatibility with the existing metabolomics workflow and databases. In this technical note, we introduce an approach capable of recording both 1H and 13C hyperpolarized spectra of metabolite mixtures in a single experiment and on the same hyperpolarized sample. We investigate the analytical performance of this method in terms of sensitivity and repeatability, and then we show that it can be efficiently applied to a plant extract. Significant sensitivity enhancements in 1H NMR are reported with a repeatability suitable for metabolomics studies without compromising on the performance of hyperpolarized 13C NMR. This approach provides a way to perform both 1H and 13C hyperpolarized NMR metabolomics with unprecedented sensitivity and throughput.
Collapse
Affiliation(s)
- Arnab Dey
- Nantes Université, CEISAM UMR 6230, 44000 Nantes, France
| | | | - Victor Ribay
- Nantes Université, CEISAM UMR 6230, 44000 Nantes, France
| | | | | |
Collapse
|
3
|
Ghini V, Meoni G, Vignoli A, Di Cesare F, Tenori L, Turano P, Luchinat C. Fingerprinting and profiling in metabolomics of biosamples. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2023; 138-139:105-135. [PMID: 38065666 DOI: 10.1016/j.pnmrs.2023.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 12/18/2023]
Abstract
This review focuses on metabolomics from an NMR point of view. It attempts to cover the broad scope of metabolomics and describes the NMR experiments that are most suitable for each sample type. It is addressed not only to NMR specialists, but to all researchers who wish to approach metabolomics with a clear idea of what they wish to achieve but not necessarily with a deep knowledge of NMR. For this reason, some technical parts may seem a bit naïve to the experts. The review starts by describing standard metabolomics procedures, which imply the use of a dedicated 600 MHz instrument and of four properly standardized 1D experiments. Standardization is a must if one wants to directly compare NMR results obtained in different labs. A brief mention is also made of standardized pre-analytical procedures, which are even more essential. Attention is paid to the distinction between fingerprinting and profiling, and the advantages and disadvantages of fingerprinting are clarified. This aspect is often not fully appreciated. Then profiling, and the associated problems of signal assignment and quantitation, are discussed. We also describe less conventional approaches, such as the use of different magnetic fields, the use of signal enhancement techniques to increase sensitivity, and the potential of field-shuttling NMR. A few examples of biomedical applications are also given, again with the focus on NMR techniques that are most suitable to achieve each particular goal, including a description of the most common heteronuclear experiments. Finally, the growing applications of metabolomics to foodstuffs are described.
Collapse
Affiliation(s)
- Veronica Ghini
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Gaia Meoni
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Di Cesare
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy; Giotto Biotech S.r.l., Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Lê T, Buscemi L, Lepore M, Mishkovsky M, Hyacinthe JN, Hirt L. Influence of DNP Polarizing Agents on Biochemical Processes: TEMPOL in Transient Ischemic Stroke. ACS Chem Neurosci 2023; 14:3013-3018. [PMID: 37603041 PMCID: PMC10485885 DOI: 10.1021/acschemneuro.3c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Hyperpolarization of 13C by dissolution dynamic nuclear polarization (dDNP) boosts the sensitivity of magnetic resonance spectroscopy (MRS), making possible the monitoring in vivo and in real time of the biochemical reactions of exogenously infused 13C-labeled metabolic tracers. The preparation of a hyperpolarized substrate requires the use of free radicals as polarizing agents. Although added at very low doses, these radicals are not biologically inert. Here, we demonstrate that the presence of the nitroxyl radical TEMPOL influences significantly the cerebral metabolic readouts of a hyperpolarized [1-13C] lactate bolus injection in a mouse model of ischemic stroke with reperfusion. Thus, the choice of the polarizing agent in the design of dDNP hyperpolarized MRS experiments is of great importance and should be taken into account to prevent or to consider significant effects that could act as confounding factors.
Collapse
Affiliation(s)
- Thanh
Phong Lê
- Geneva
School of Health Sciences, HES-SO University
of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland
- Laboratory
of Functional and Metabolic Imaging, Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Lara Buscemi
- Department
of Clinical Neurosciences, Lausanne University
Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Mario Lepore
- CIBM
Center for Biomedical Imaging, École
Polytechnique Fédérale de Lausanne (EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Mor Mishkovsky
- Laboratory
of Functional and Metabolic Imaging, Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Station 6, 1015 Lausanne, Switzerland
| | - Jean-Noël Hyacinthe
- Geneva
School of Health Sciences, HES-SO University
of Applied Sciences and Arts Western Switzerland, Avenue de Champel 47, 1206 Geneva, Switzerland
- Laboratory
of Functional and Metabolic Imaging, Institute
of Physics, École Polytechnique Fédérale de Lausanne
(EPFL), Station 6, 1015 Lausanne, Switzerland
- Image
Guided Intervention Laboratory, Faculty of Medicine, University of Geneva, HUG, Rue Gabrielle-Perret-Gentil 4, 1211 Geneva 14, Switzerland
| | - Lorenz Hirt
- Department
of Clinical Neurosciences, Lausanne University
Hospital (CHUV), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| |
Collapse
|
5
|
Ribay V, Praud C, Letertre MPM, Dumez JN, Giraudeau P. Hyperpolarized NMR metabolomics. Curr Opin Chem Biol 2023; 74:102307. [PMID: 37094508 DOI: 10.1016/j.cbpa.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023]
Abstract
Hyperpolarized NMR is a promising approach to address the sensitivity limits of conventional NMR metabolomics approaches, which currently fails to detect minute metabolite concentrations in biological samples. This review describes how tremendous signal enhancement offered by dissolution-dynamic nuclear polarization and parahydrogen-based techniques can be fully exploited for molecular omics sciences. Recent developments, including the combination of hyperpolarization techniques with fast multi-dimensional NMR implementation and quantitative workflows are described, and a comprehensive comparison of existing hyperpolarization techniques is proposed. High-throughput, sensitivity, resolution and other relevant challenges that should be tackled for a general application of hyperpolarized NMR in metabolomics are discussed.
Collapse
Affiliation(s)
- Victor Ribay
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Clément Praud
- Nantes Université, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | | | | | | |
Collapse
|