1
|
Wang L, Song X, Yang H, Wang C, Shao Q, Tao H, Qiao M, Niu W, Liu X. Are the antagonist muscle fatigued during a prolonged isometric fatiguing elbow flexion at very low forces for young adults? Front Physiol 2022; 13:956639. [PMID: 36277214 PMCID: PMC9585301 DOI: 10.3389/fphys.2022.956639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to examine whether antagonist muscles may be fatigued during a prolonged isometric fatiguing elbow flexion at very low forces. Twelve healthy male subjects sustained an isometric elbow flexion at 10% maximal voluntary contraction torque until exhaustion while multichannel electromyographic signals were collected from the biceps brachii (BB) and triceps brachii (TB). Muscle fiber conduction velocity (CV) and fractal dimension (FD) of both muscles were calculated to reflect peripheral and central fatigue. CV and FD of TB as well as FD of BB decreased progressively during the sustained fatiguing contraction, while the CV of BB declined at the beginning of the contraction and then increased progressively until the end of the contraction. The result may indicate that during the sustained low-force isometric fatiguing contraction, antagonist muscle may be peripherally fatigued, and changes in coactivation activities were modulated not only by central neuronal mechanisms of common drive but also by peripheral metabolic factors.
Collapse
Affiliation(s)
- Lejun Wang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
- *Correspondence: Lejun Wang, ; Xiaodong Liu,
| | - Xiaoqian Song
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Hua Yang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Ce Wang
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Qineng Shao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Haifeng Tao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Minjie Qiao
- Sport and Health Research Center, Physical Education Department, Tongji University, Shanghai, China
| | - Wenxin Niu
- School of Medicine, Tongji University, Shanghai, China
| | - Xiaodong Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lejun Wang, ; Xiaodong Liu,
| |
Collapse
|
2
|
Cè E, Coratella G, Doria C, Borrelli M, Rampichini S, Limonta E, Longo S, Esposito F. Determining voluntary activation in synergistic muscles: a novel mechanomyographic approach. Eur J Appl Physiol 2022; 122:1897-1913. [PMID: 35610394 PMCID: PMC9287262 DOI: 10.1007/s00421-022-04966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/02/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE Drawing on correlations between the mechanomyographic (MMG) and the force signal, we devised a novel approach based on MMG signal analysis to detect voluntary activation (VA) of the synergistic superficial heads of the quadriceps muscle. We hypothesized that, after a fatiguing exercise, the changes in the evoked MMG signal of each quadriceps head would correlate with the changes in the level of VA in the whole quadriceps. METHODS Twenty-five men underwent a unilateral single-leg quadriceps exercise to failure. Before and after exercise, VA was assessed by interpolated-twitch-technique via nerve stimulation during and after maximum voluntary contraction (MVC). The force and MMG signal were recorded from vastus lateralis, vastus medialis, and rectus femoris. The MMG peak-to-peak was calculated and the voluntary activation index (VAMMG), defined as the superimposed/potentiated MMG peak-to-peak ratio, was determined from the MMG signal for each head. RESULTS VAMMG presented a very high intraclass correlation coefficient (0.981-0.998) and sensitivity (MDC95%: 0.42-6.97%). MVC and VA were decreased after exercise in both the exercising [MVC:-17(5)%, ES -0.92; VA: -7(3)%, ES -1.90] and the contralateral limb [MVC: -9(4)%, ES -0.48; VA: -4(1)%, ES -1.51]. VAMMG was decreased in both the exercising [~ -9(6)%, ES -1.77] and contralateral limb [~ -3(2)%, ES -0.57], with a greater decrease in VAMMG noted only in the vastus medialis of the exercising limb. Moderate-to-very high correlations were found between VAMMG and VA (R-range: 0.503-0.886) before and after exercise. CONCLUSION VAMMG may be implemented to assess VA and provide further information when multiple synergistic muscle heads are involved in fatiguing exercises.
Collapse
Affiliation(s)
- Emiliano Cè
- Department of Biomedical Sciences for Health (SCIBIS), Università Degli Studi Di Milano, University of Milan, Via Colombo 71, 20133, Milan, Italy. .,IRCSS Galeazzi Orthopedic Institute, Via Riccardo Galeazzi, 4, 20161, Milan, Italy.
| | - Giuseppe Coratella
- Department of Biomedical Sciences for Health (SCIBIS), Università Degli Studi Di Milano, University of Milan, Via Colombo 71, 20133, Milan, Italy
| | - Christian Doria
- Department of Biomedical Sciences for Health (SCIBIS), Università Degli Studi Di Milano, University of Milan, Via Colombo 71, 20133, Milan, Italy
| | - Marta Borrelli
- Department of Biomedical Sciences for Health (SCIBIS), Università Degli Studi Di Milano, University of Milan, Via Colombo 71, 20133, Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health (SCIBIS), Università Degli Studi Di Milano, University of Milan, Via Colombo 71, 20133, Milan, Italy
| | - Eloisa Limonta
- Department of Biomedical Sciences for Health (SCIBIS), Università Degli Studi Di Milano, University of Milan, Via Colombo 71, 20133, Milan, Italy
| | - Stefano Longo
- Department of Biomedical Sciences for Health (SCIBIS), Università Degli Studi Di Milano, University of Milan, Via Colombo 71, 20133, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health (SCIBIS), Università Degli Studi Di Milano, University of Milan, Via Colombo 71, 20133, Milan, Italy.,IRCSS Galeazzi Orthopedic Institute, Via Riccardo Galeazzi, 4, 20161, Milan, Italy
| |
Collapse
|
3
|
Central and Peripheral Fatigue in Physical Exercise Explained: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19073909. [PMID: 35409591 PMCID: PMC8997532 DOI: 10.3390/ijerph19073909] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The study of the origin and implications of fatigue in exercise has been widely investigated, but not completely understood given the complex multifactorial mechanisms involved. Then, it is essential to understand the fatigue mechanism to help trainers and physicians to prescribe an adequate training load. The present narrative review aims to analyze the multifactorial factors of fatigue in physical exercise. To reach this aim, a consensus and critical review were performed using both primary sources, such as scientific articles, and secondary ones, such as bibliographic indexes, web pages, and databases. The main search engines were PubMed, SciELO, and Google Scholar. Central and peripheral fatigue are two unison constructs part of the Integrative Governor theory, in which both psychological and physiological drives and requirements are underpinned by homeostatic principles. The relative activity of each one is regulated by dynamic negative feedback activity, as the fundamental general operational controller. Fatigue is conditioned by factors such as gender, affecting men and women differently. Sleep deprivation or psychological disturbances caused, for example, by stress, can affect neural activation patterns, realigning them and slowing down simple mental operations in the context of fatigue. Then, fatigue can have different origins not only related with physiological factors. Therefore, all these prisms must be considered for future approaches from sport and clinical perspectives.
Collapse
|