1
|
Mayakrishnan V, Kannappan P, Balakarthikeyan J, Kim CY. Rodent model intervention for prevention and optimal management of sarcopenia: A systematic review on the beneficial effects of nutrients & non-nutrients and exercise to improve skeletal muscle health. Ageing Res Rev 2024; 102:102543. [PMID: 39427886 DOI: 10.1016/j.arr.2024.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/25/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024]
Abstract
Sarcopenia is a common musculoskeletal disorder characterized by degenerative processes and is strongly linked to an increased susceptibility to falls, fractures, physical limitations, and mortality. Several models have been used to explore therapeutic and preventative measures as well as to gain insight into the molecular mechanisms behind sarcopenia. With novel experimental methodologies emerging to design foods or novel versions of conventional foods, understanding the impact of nutrition on the prevention and management of sarcopenia has become important. This review provides a thorough assessment of the use of rodent models of sarcopenia for understanding the aging process, focusing the effects of nutrients, plant extracts, exercise, and combined interventions on skeletal muscle health. According to empirical research, nutraceuticals and functional foods have demonstrated potential benefits in enhancing physical performance. In preclinical investigations, the administration of herbal extracts and naturally occurring bioactive compounds yielded advantageous outcomes such as augmented muscle mass and strength generation. Furthermore, herbal treatments exhibited inhibitory effects on muscle atrophy and sarcopenia. A substantial body of information establishes a connection between diet and the muscle mass, strength, and functionality of older individuals. This suggests that nutrition has a major impact in both the prevention and treatment of sarcopenia.
Collapse
Affiliation(s)
- Vijayakumar Mayakrishnan
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Priya Kannappan
- PSG College of Arts & Science, Civil Aerodrome, Coimbatore, Tamil Nadu 641014, India
| | | | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Department of Food and Nutrition, Yeungnam University Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
2
|
El Assar M, Rodríguez-Sánchez I, Álvarez-Bustos A, Rodríguez-Mañas L. Biomarkers of frailty. Mol Aspects Med 2024; 97:101271. [PMID: 38631189 DOI: 10.1016/j.mam.2024.101271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024]
Abstract
Several biomarkers have been proposed to identify frailty, a multisystemic age-related syndrome. However, the complex pathophysiology and the absence of a consensus on a comprehensive and universal definition make it challenging to pinpoint a singular biomarker or set of biomarkers that conclusively characterize frailty. This review delves into the main laboratory biomarkers, placing special emphasis on those associated with various pathways closely tied to the frailty condition, such as inflammation, oxidative stress, mitochondrial dysfunction, metabolic and endocrine alterations and microRNA. Additionally, we provide a summary of different clinical biomarkers encompassing different tools that have been proposed to assess frailty. We further address various imaging biomarkers such as Dual Energy X-ray Absorptiometry, Bioelectrical Impedance analysis, Computed Tomography and Magnetic Resonance Imaging, Ultrasound and D3 Creatine dilution. Intervention to treat frailty, including non-pharmacological ones, especially those involving physical exercise and nutrition, and pharmacological interventions, that include those targeting specific mechanisms such as myostatin inhibitors, insulin sensitizer metformin and with special relevance for hormonal treatments are mentioned. We further address the levels of different biomarkers in monitoring the potential positive effects of some of these interventions. Despite the availability of numerous biomarkers, their performance and usefulness in the clinical arena are far from being satisfactory. Considering the multicausality of frailty, there is an increasing need to assess the role of sets of biomarkers and the combination between laboratory, clinical and image biomarkers, in terms of sensitivity, specificity and predictive values for the diagnosis and prognosis of the different outcomes of frailty to improve detection and monitoring of older people with frailty or at risk of developing it, being this a need in the everyday clinical practice.
Collapse
Affiliation(s)
- Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Madrid, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Alejandro Álvarez-Bustos
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Madrid, Spain.
| |
Collapse
|
3
|
Hooshmandi Z, Daryanoosh F, Ahmadi Hekmatikar AH, Awang Daud DM. Highlighting the effect of reduced training volume on maintaining hormonal adaptations obtained from periodized resistance training in sarcopenic older women. Expert Rev Endocrinol Metab 2024; 19:187-197. [PMID: 38103186 DOI: 10.1080/17446651.2023.2294091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND This study investigated the impact of the High Intensity Interval Resistance Training (HIIRT) protocol on hormonal changes in older women. RESEARCH DESIGN AND METHODS Forty sarcopenic women were divided into an experimental group (EX = 30) and a control group (C = 10). The EX-group was further divided into Maintenance Training 1 (MT1 = 10), Maintenance Training 2 (MT2 = 10), and Detraining (DT = 10). The participants underwent 8 weeks of resistance training, consisting of hypertrophy and strength cycles. Following this, the EX-group had a 4-week period with no exercise or a reduced training volume. Measurements were taken at three time points. RESULTS After 8 weeks, the EX-group showed significant improvements in Insulin Like Growth Factor-1 (IGF-1), Myostatin (MSTN), Follistatin (Fstn), Growth Hormone (GH) and Cortisol (Cort) compared to the control group. During the volume reduction period, there were no significant differences between MT1 and MT2 groups, but both groups saw increases in IGF-1, Fstn, GH, and decreases in MSTN and Cort compared to the DT group. CONCLUSIONS These findings suggest that performing at least one training session per week with the HIIRT protocol is crucial for maintaining hormonal adaptations in sarcopenic older women.
Collapse
Affiliation(s)
- Zeinab Hooshmandi
- Department of Exercise Physiology, Faculty of Education and Psychology, Payame Noor University, Tehran, Iran
| | - Farhad Daryanoosh
- Department of Exercise Physiology, Faculty of Education and Psychology, Shiraz University, Shiraz, Iran
| | | | - D Maryama Awang Daud
- Health Through Exercise and Active Living (HEAL) Research Unit, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
4
|
Alizadeh Pahlavani H, Laher I, Knechtle B, Zouhal H. Exercise and mitochondrial mechanisms in patients with sarcopenia. Front Physiol 2022; 13:1040381. [PMID: 36561214 PMCID: PMC9767441 DOI: 10.3389/fphys.2022.1040381] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sarcopenia is a severe loss of muscle mass and functional decline during aging that can lead to reduced quality of life, limited patient independence, and increased risk of falls. The causes of sarcopenia include inactivity, oxidant production, reduction of antioxidant defense, disruption of mitochondrial activity, disruption of mitophagy, and change in mitochondrial biogenesis. There is evidence that mitochondrial dysfunction is an important cause of sarcopenia. Oxidative stress and reduction of antioxidant defenses in mitochondria form a vicious cycle that leads to the intensification of mitochondrial separation, suppression of mitochondrial fusion/fission, inhibition of electron transport chain, reduction of ATP production, an increase of mitochondrial DNA damage, and mitochondrial biogenesis disorder. On the other hand, exercise adds to the healthy mitochondrial network by increasing markers of mitochondrial fusion and fission, and transforms defective mitochondria into efficient mitochondria. Sarcopenia also leads to a decrease in mitochondrial dynamics, mitophagy markers, and mitochondrial network efficiency by increasing the level of ROS and apoptosis. In contrast, exercise increases mitochondrial biogenesis by activating genes affected by PGC1-ɑ (such as CaMK, AMPK, MAPKs) and altering cellular calcium, ATP-AMP ratio, and cellular stress. Activation of PGC1-ɑ also regulates transcription factors (such as TFAM, MEFs, and NRFs) and leads to the formation of new mitochondrial networks. Hence, moderate-intensity exercise can be used as a non-invasive treatment for sarcopenia by activating pathways that regulate the mitochondrial network in skeletal muscle.
Collapse
Affiliation(s)
- Hamed Alizadeh Pahlavani
- Department of Physical Education, Farhangian University, Tehran, Iran,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| | - Ismail Laher
- Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, Zurich, Switzerland,Medbase St Gallen Am Vadianplatz, St. Gallen, Switzerland,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| | - Hassane Zouhal
- Movement Sport, Health and Sciences Laboratory (M2S) UFR-STAPS, University of Rennes 2-ENS Cachan, Charles Tillon, France,Institut International des Sciences Du Sport (2IS), Irodouer, France,*Correspondence: Beat Knechtle, ; Hamed Alizadeh Pahlavani, ; Hassane Zouhal,
| |
Collapse
|
5
|
Xie F, Zou T, Chen J, Liang P, Wang Z, You J. Polysaccharides from Enteromorpha prolifera improves insulin sensitivity and promotes adipose thermogenesis in diet-induced obese mice associated with activation of PGC-1α-FNDC5/irisin pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Resistance Exercise Improves Spatial Learning Ability Through Phosphorylation of 5'-Adenosine Monophosphate-Activated Protein Kinase in Parkinson Disease Mice. Int Neurourol J 2021; 25:S55-62. [PMID: 34844387 PMCID: PMC8654314 DOI: 10.5213/inj.2142336.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Exercise is a representative noninvasive treatment that can be applied to various diseases. We studied the effect of resistance exercise on motor function and spatial learning ability in Parkinson disease (PD) mice. Methods The rotarod test and beam walking test were conducted to evaluate the effect of resistance exercise on motor function, and the Morris water maze test was conducted to examine the effect of resistance exercise on spatial learning ability. The effect of resistance exercise on brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) expression and 5’-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was investigated by Western blot analysis. New cell generation was confirmed by immunohistochemistry for 5-bromo-2’-deoxyuridine. Results Resistance exercise improved coordination, balance, and spatial learning ability in PD mice. Resistance exercise enhanced new cell production, BDNF and TrkB expression, and AMPK phosphorylation in PD mice. The effect of such resistance exercise was similar to that of levodopa application. Conclusions In PD-induced mice, resistance exercise enhanced AMPK phosphorylation to increase BDNF expression and new neuron generation, thereby improving spatial learning ability. Resistance exercise is believed to help improve symptoms of PD.
Collapse
|
7
|
Strategies for Overcoming Intractable Disorders or Memory Impairments. Int Neurourol J 2021; 25:S1-2. [PMID: 34053204 PMCID: PMC8171241 DOI: 10.5213/inj.2121edi.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|