2
|
Chang KY, Yang CS, Lai JY, Lin SJ, Li JR, Liu TJ, Yang WL, Lin MY, Yeh CH, Hsu SW, Chen CJ. An Artificial Intelligence-assisted Diagnostic System Improves Upper Urine Tract Cytology Diagnosis. In Vivo 2024; 38:3016-3021. [PMID: 39477382 PMCID: PMC11535956 DOI: 10.21873/invivo.13785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 11/07/2024]
Abstract
BACKGROUND/AIM To evaluate efficacy of the AIxURO system, a deep learning-based artificial intelligence (AI) tool, in enhancing the accuracy and reliability of urine cytology for diagnosing upper urinary tract cancers. MATERIALS AND METHODS One hundred and eighty-five cytology samples of upper urine tract were collected and categorized according to The Paris System for Reporting Urinary Cytology (TPS), yielding 168 negative for High-Grade Urothelial Carcinoma (NHGUC), 14 atypical urothelial cells (AUC), 2 suspicious for high-grade urothelial carcinoma (SHGUC), and 1 high-grade urothelial carcinoma (HGUC). The AIxURO system, trained on annotated cytology images, was employed to analyze these samples. Independent assessments by a cytotechnologist and a cytopathologist were conducted to validate the initial AIxURO assessment. RESULTS AIxURO identified discrepancies in 37 of the 185 cases, resulting in a 20% discrepancy rate. The cytotechnologist achieved an accuracy of 85% for NHGUC and 21.4% for AUC, whereas the cytopathologist attained accuracies of 95% for NHGUC and 85.7% for AUC. The cytotechnologist exhibited overcall rates of roughly 15% and undercall rates of greater than 50%, while the cytopathologist showed profoundly lower miscall rates from both undercall and overcall. AIxURO significantly enhanced diagnostic accuracy and consistency, particularly in complex cases involving atypical cells. CONCLUSION AIxURO can improve the accuracy and reliability of cytology diagnosis for upper urine tract urothelial carcinomas by providing precise detection on atypical urothelial cells and reducing subjectivity in assessments. The integration of AIxURO into clinical practice can significantly ameliorate diagnostic outcomes, highlighting the synergistic potential of AI technology and human expertise in cytology.
Collapse
Affiliation(s)
- Kang-Yu Chang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chi-Shun Yang
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jing-Yi Lai
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Shu-Jiuan Lin
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Jian-Ri Li
- Department of Urology, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | | | | | | | | | | | - Chih-Jung Chen
- Department of Pathology and Laboratory Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C.;
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan, R.O.C
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan, R.O.C
| |
Collapse
|
4
|
Altıntaş E, Şahin A, Babayev H, Gül M, Batur AF, Kaynar M, Kılıç Ö, Göktaş S. Machine learning algorithm predicts urethral stricture following transurethral prostate resection. World J Urol 2024; 42:324. [PMID: 38748256 PMCID: PMC11096196 DOI: 10.1007/s00345-024-05017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
PURPOSE To predict the post transurethral prostate resection(TURP) urethral stricture probability by applying different machine learning algorithms using the data obtained from preoperative blood parameters. METHODS A retrospective analysis of data from patients who underwent bipolar-TURP encompassing patient characteristics, preoperative routine blood test outcomes, and post-surgery uroflowmetry were used to develop and educate machine learning models. Various metrics, such as F1 score, model accuracy, negative predictive value, positive predictive value, sensitivity, specificity, Youden Index, ROC AUC value, and confidence interval for each model, were used to assess the predictive performance of machine learning models for urethral stricture development. RESULTS A total of 109 patients' data (55 patients without urethral stricture and 54 patients with urethral stricture) were included in the study after implementing strict inclusion and exclusion criteria. The preoperative Platelet Distribution Width, Mean Platelet Volume, Plateletcrit, Activated Partial Thromboplastin Time, and Prothrombin Time values were statistically meaningful between the two cohorts. After applying the data to the machine learning systems, the accuracy prediction scores for the diverse algorithms were as follows: decision trees (0.82), logistic regression (0.82), random forests (0.91), support vector machines (0.86), K-nearest neighbors (0.82), and naïve Bayes (0.77). CONCLUSION Our machine learning models' accuracy in predicting the post-TURP urethral stricture probability has demonstrated significant success. Exploring prospective studies that integrate supplementary variables has the potential to enhance the precision and accuracy of machine learning models, consequently progressing their ability to predict post-TURP urethral stricture risk.
Collapse
Affiliation(s)
- Emre Altıntaş
- Faculty of Medicine, Department of Urology, Selcuk University, Tıp Fakültesi Alaeddin Keykubat Yerleşkesi Selçuklu, Konya, 42131, Turkey.
| | - Ali Şahin
- Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Huseyn Babayev
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Murat Gül
- Faculty of Medicine, Department of Urology, Selcuk University, Tıp Fakültesi Alaeddin Keykubat Yerleşkesi Selçuklu, Konya, 42131, Turkey
| | - Ali Furkan Batur
- Faculty of Medicine, Department of Urology, Selcuk University, Tıp Fakültesi Alaeddin Keykubat Yerleşkesi Selçuklu, Konya, 42131, Turkey
| | - Mehmet Kaynar
- Faculty of Medicine, Department of Urology, Selcuk University, Tıp Fakültesi Alaeddin Keykubat Yerleşkesi Selçuklu, Konya, 42131, Turkey
| | - Özcan Kılıç
- Faculty of Medicine, Department of Urology, Selcuk University, Tıp Fakültesi Alaeddin Keykubat Yerleşkesi Selçuklu, Konya, 42131, Turkey
| | - Serdar Göktaş
- Faculty of Medicine, Department of Urology, Selcuk University, Tıp Fakültesi Alaeddin Keykubat Yerleşkesi Selçuklu, Konya, 42131, Turkey
| |
Collapse
|
5
|
Ghayda RA, Cannarella R, Calogero AE, Shah R, Rambhatla A, Zohdy W, Kavoussi P, Avidor-Reiss T, Boitrelle F, Mostafa T, Saleh R, Toprak T, Birowo P, Salvio G, Calik G, Kuroda S, Kaiyal RS, Ziouziou I, Crafa A, Phuoc NHV, Russo GI, Durairajanayagam D, Al-Hashimi M, Hamoda TAAAM, Pinggera GM, Adriansjah R, Maldonado Rosas I, Arafa M, Chung E, Atmoko W, Rocco L, Lin H, Huyghe E, Kothari P, Solorzano Vazquez JF, Dimitriadis F, Garrido N, Homa S, Falcone M, Sabbaghian M, Kandil H, Ko E, Martinez M, Nguyen Q, Harraz AM, Serefoglu EC, Karthikeyan VS, Tien DMB, Jindal S, Micic S, Bellavia M, Alali H, Gherabi N, Lewis S, Park HJ, Simopoulou M, Sallam H, Ramirez L, Colpi G, Agarwal A. Artificial Intelligence in Andrology: From Semen Analysis to Image Diagnostics. World J Mens Health 2024; 42:39-61. [PMID: 37382282 PMCID: PMC10782130 DOI: 10.5534/wjmh.230050] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 06/30/2023] Open
Abstract
Artificial intelligence (AI) in medicine has gained a lot of momentum in the last decades and has been applied to various fields of medicine. Advances in computer science, medical informatics, robotics, and the need for personalized medicine have facilitated the role of AI in modern healthcare. Similarly, as in other fields, AI applications, such as machine learning, artificial neural networks, and deep learning, have shown great potential in andrology and reproductive medicine. AI-based tools are poised to become valuable assets with abilities to support and aid in diagnosing and treating male infertility, and in improving the accuracy of patient care. These automated, AI-based predictions may offer consistency and efficiency in terms of time and cost in infertility research and clinical management. In andrology and reproductive medicine, AI has been used for objective sperm, oocyte, and embryo selection, prediction of surgical outcomes, cost-effective assessment, development of robotic surgery, and clinical decision-making systems. In the future, better integration and implementation of AI into medicine will undoubtedly lead to pioneering evidence-based breakthroughs and the reshaping of andrology and reproductive medicine.
Collapse
Affiliation(s)
- Ramy Abou Ghayda
- Urology Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, USA
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rupin Shah
- Department of Urology, Lilavati Hospital and Research Centre, Mumbai, India
| | - Amarnath Rambhatla
- Department of Urology, Henry Ford Health System, Vattikuti Urology Institute, Detroit, MI, USA
| | - Wael Zohdy
- Andrology and STDs, Cairo University, Cairo, Egypt
| | - Parviz Kavoussi
- Department of Urology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tomer Avidor-Reiss
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
- Department of Urology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Florence Boitrelle
- Reproductive Biology, Fertility Preservation, Andrology, CECOS, Poissy Hospital, Poissy, France
- Department of Biology, Reproduction, Epigenetics, Environment, and Development, Paris Saclay University, UVSQ, INRAE, BREED, Paris, France
| | - Taymour Mostafa
- Andrology, Sexology & STIs Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ramadan Saleh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine, Sohag University, Sohag, Egypt
| | - Tuncay Toprak
- Department of Urology, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ponco Birowo
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Gianmaria Salvio
- Department of Endocrinology, Polytechnic University of Marche, Ancona, Italy
| | - Gokhan Calik
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey
| | - Shinnosuke Kuroda
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
- Department of Urology, Reproduction Center, Yokohama City University Medical Center, Yokohama, Japan
| | - Raneen Sawaid Kaiyal
- Glickman Urological & Kidney Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Imad Ziouziou
- Department of Urology, College of Medicine and Pharmacy, Ibn Zohr University, Agadir, Morocco
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Nguyen Ho Vinh Phuoc
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
- Department of Urology and Andrology, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | | | - Damayanthi Durairajanayagam
- Department of Physiology, Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Selangor, Malaysia
| | - Manaf Al-Hashimi
- Department of Urology, Burjeel Hospital, Abu Dhabi, United Arab Emirates (UAE)
- Khalifa University, College of Medicine and Health Science, Abu Dhabi, United Arab Emirates (UAE)
| | - Taha Abo-Almagd Abdel-Meguid Hamoda
- Department of Urology, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Urology, Faculty of Medicine, Minia University, El-Minia, Egypt
| | | | - Ricky Adriansjah
- Department of Urology, Hasan Sadikin General Hospital, Universitas Padjadjaran, Banding, Indonesia
| | | | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha, Qatar
- Department of Urology, Weill Cornell Medical-Qatar, Doha, Qatar
| | - Eric Chung
- Department of Urology, Princess Alexandra Hospital, University of Queensland, Brisbane QLD, Australia
| | - Widi Atmoko
- Department of Urology, Dr. Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Haocheng Lin
- Department of Urology, Peking University Third Hospital, Peking University, Beijing, China
| | - Eric Huyghe
- Department of Urology and Andrology, University Hospital of Toulouse, Toulouse, France
| | - Priyank Kothari
- Department of Urology, B.Y.L. Nair Charitable Hospital, Topiwala National Medical College, Mumbai, India
| | | | - Fotios Dimitriadis
- Department of Urology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nicolas Garrido
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Sheryl Homa
- Department of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Marco Falcone
- Department of Urology, Molinette Hospital, A.O.U. Città della Salute e della Scienza, University of Turin, Torino, Italy
| | - Marjan Sabbaghian
- Department of Andrology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Edmund Ko
- Department of Urology, Loma Linda University Health, Loma Linda, CA, USA
| | - Marlon Martinez
- Section of Urology, Department of Surgery, University of Santo Tomas Hospital, Manila, Philippines
| | - Quang Nguyen
- Section of Urology, Department of Surgery, University of Santo Tomas Hospital, Manila, Philippines
- Center for Andrology and Sexual Medicine, Viet Duc University Hospital, Hanoi, Vietnam
- Department of Urology, Andrology and Sexual Medicine, University of Medicine and Pharmacy, Vietnam National University, Hanoi, Vietnam
| | - Ahmed M. Harraz
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
- Department of Surgery, Urology Unit, Farwaniya Hospital, Farwaniya, Kuwait
- Department of Urology, Sabah Al Ahmad Urology Center, Kuwait City, Kuwait
| | - Ege Can Serefoglu
- Department of Urology, Biruni University School of Medicine, Istanbul, Turkey
| | | | - Dung Mai Ba Tien
- Department of Andrology, Binh Dan Hospital, Ho Chi Minh City, Vietnam
| | - Sunil Jindal
- Department of Andrology and Reproductive Medicine, Jindal Hospital, Meerut, India
| | - Sava Micic
- Department of Andrology, Uromedica Polyclinic, Belgrade, Serbia
| | - Marina Bellavia
- Andrology and IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | - Hamed Alali
- King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Nazim Gherabi
- Andrology Committee of the Algerian Association of Urology, Algiers, Algeria
| | - Sheena Lewis
- Examen Lab Ltd., Northern Ireland, United Kingdom
| | - Hyun Jun Park
- Department of Urology, Pusan National University School of Medicine, Busan, Korea
- Medical Research Institute of Pusan National University Hospital, Busan, Korea
| | - Mara Simopoulou
- Department of Experimental Physiology, School of Health Sciences, Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Hassan Sallam
- Alexandria University Faculty of Medicine, Alexandria, Egypt
| | - Liliana Ramirez
- IVF Laboratory, CITMER Reproductive Medicine, Mexico City, Mexico
| | - Giovanni Colpi
- Andrology and IVF Center, Next Fertility Procrea, Lugano, Switzerland
| | - Ashok Agarwal
- Global Andrology Forum, Moreland Hills, OH, USA
- Cleveland Clinic, Cleveland, OH, USA
| | | |
Collapse
|