1
|
Gao W, Wei S, Li Z, Li L, Zhang X, Li C, Gao D. Nano magnetic liposomes-encapsulated parthenolide and glucose oxidase for ultra-efficient synergistic antitumor therapy. NANOTECHNOLOGY 2020; 31:355104. [PMID: 32403097 DOI: 10.1088/1361-6528/ab92c8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Multifunctional nanoplatforms yield extremely high synergistic therapeutic effects on the basis of low biological toxicity. Based on the unique tumor microenvironment (TME), a liposomes (Lips)-based multifunctional antitumor drug delivery system known as GOD-PTL-Lips@MNPs was synthesized for chemotherapy, chemodynamic therapy (CDT), starvation therapy, and magnetic targeting synergistic therapy. Evidence has suggested that parthenolide (PTL) can induce apoptosis and consume excessive glutathione (GSH), thereby increasing the efficacy of chemodynamic therapy. On the other hand, glucose oxidase (GOD) can consume intratumoral glucose, lower pH and increase the level of H2O2 in the tumor tissue. Integrated Fe3O4 magnetic nanoparticles (MNPs) containing Fe2+ and Fe3+ effectively catalyzes H2O2 to a highly toxic hydroxyl radical (•OH) and provide magnetic targeting. During the course of in vitro and in vivo experiments, GOD-PTL-Lips@MNPs demonstrated remarkable synergistic antitumor efficacy. In particular, in mice receiving a 14 day treatment of GOD-PTL-Lips@MNPs, tumor growth was significantly inhibited, as compared with the control group. Moreover, toxicology study and histological examination demonstrated low biotoxicity of this novel therapeutic approach. In summary, our data suggests great antitumor potential for GOD-PTL-Lips@MNPs which could provide an alternative means of further improving the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Wenbin Gao
- State Key Laboratory of Metastable Materials Science and Technology, Applying Chemistry Key Lab of Hebei Province, Yanshan University, No.438 Hebei Street, Qinhuangdao 066004, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
2
|
Parthenolide as Cooperating Agent for Anti-Cancer Treatment of Various Malignancies. Pharmaceuticals (Basel) 2020; 13:ph13080194. [PMID: 32823992 PMCID: PMC7466132 DOI: 10.3390/ph13080194] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Primary and acquired resistance of cancer to therapy is often associated with activation of nuclear factor kappa B (NF-κB). Parthenolide (PN) has been shown to inhibit NF-κB signaling and other pro-survival signaling pathways, induce apoptosis and reduce a subpopulation of cancer stem-like cells in several cancers. Multimodal therapies that include PN or its derivatives seem to be promising approaches enhancing sensitivity of cancer cells to therapy and diminishing development of resistance. A number of studies have demonstrated that several drugs with various targets and mechanisms of action can cooperate with PN to eliminate cancer cells or inhibit their proliferation. This review summarizes the current state of knowledge on PN activity and its potential utility as complementary therapy against different cancers.
Collapse
|
3
|
Ghorbani-Abdi-Saedabad A, Hanafi-Bojd MY, Parsamanesh N, Tayarani-Najaran Z, Mollaei H, Hoshyar R. Anticancer and apoptotic activities of parthenolide in combination with epirubicin in mda-mb-468 breast cancer cells. Mol Biol Rep 2020; 47:5807-5815. [PMID: 32686017 DOI: 10.1007/s11033-020-05649-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/08/2020] [Indexed: 12/22/2022]
Abstract
Breast cancer is the most common malignancy in women worldwide. Unfortunately, current therapeutic methods are not completely efficient. Hence, combination therapy with medicinal plants has attracted several kinds of research. In the current study, we aimed to investigate the apoptotic and anti-cancer effect of Parthenolide in combination with Epirubicin in the MDA-MB-468 breast cancer cell line. In this study, the anti-proliferative and pro-apoptotic effect of Parthenolide in combination with Epirubicin and without it, in the MDA-MB-468 cell line have been assessed by MTT test, Hoescht staining and flow cytometry methods. Our outcomes showed that Parthenolide treatment in the present of Epirubicin led to a decrease in the minimum toxic concentration of Parthenolide and Epirubicin in comparison with individual treatments. Then, to achieve a likely molecular mechanism of mentioned drugs Bax and Bcl2 expression level evaluated by Real-time PCR and subsequently, Western blotting has been estimated the protein level of Caspase 3. Our data indicated that the treatment of cells with Parthenolide led to up-regulation of Bax and downregulation of Bcl2 at mRNA level. Moreover, Parthenolide treatment led to the obvious alternation of Caspase3 protein level. These results indicated that Parthenolide in combination with Epirubicin have significant cytotoxicity due to targeting the main regulators of apoptosis. Hence, according to lack of cytotoxicity of Parthenolide on normal cells that lead to reduction of drug side effects, it could be suggested as an adjuvant therapy with Epirubicin after complementary research on animal model and clinical trial.
Collapse
Affiliation(s)
| | - Mohammad Yahya Hanafi-Bojd
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.,Department of Nanomedicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Homa Mollaei
- Department of Biology, Faculty of Sciences, University of Birjand, Birjand, Iran.
| | - Reyhane Hoshyar
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran. .,Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
4
|
Kouhpaikar H, Sadeghian MH, Rafatpanah H, Kazemi M, Iranshahi M, Delbari Z, Khodadadi F, Ayatollahi H, Rassouli FB. Synergy between parthenolide and arsenic trioxide in adult T-cell leukemia/lymphoma cells in vitro. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:616-622. [PMID: 32742599 PMCID: PMC7374994 DOI: 10.22038/ijbms.2020.40650.9610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 11/13/2019] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Adult T-cell leukemia/lymphoma (ATLL) is an aggressive lymphoid malignancy with low survival rate and distinct geographical distribution. In search for novel chemotherapeutics against ATLL, we investigated the combinatorial effects of parthenolide, a sesquiterpene lactone with valuable pharmaceutical activities, and arsenic trioxide (ATO) in vitro. MATERIALS AND METHODS MT2 cells, an ATLL cell line, were treated with increasing concentrations of parthenolide (1.25, 2.5, and 5 μg/ml) and ATO (2, 4, 8, and 16 µM) to determine their IC50. Then, cells were treated with a combination of sub-IC50 concentrations of parthenolide (1 μg/ml) and ATO (2 µM) for 72 hr. Cell viability and cell cycle changes were assessed by Alamar blue and PI staining, respectively. To understand the mechanisms responsible for observed effects, expression of CD44, NF-κB (REL-A), BMI-1, and C-MYC were investigated by real-time PCR. RESULTS Assessment of cell viability indicated that parthenolide significantly increased the toxicity of ATO, as confirmed by accumulation of MT2 cells in the sub G1 phase of the cell cycle. Moreover, molecular analysis revealed significant down-regulation of CD44, NF-κB (REL-A), BMI-1, and C-MYC upon combinatorial administration of parthenolide and ATO in comparison with relevant controls. CONCLUSION Taken together, present results showed that parthenolide significantly enhanced the toxicity of ATO in MT2 cells. Therefore, the future possible clinical impact of our study could be combinatorial use of parthenolide and ATO as a novel and more effective approach for ATLL.
Collapse
Affiliation(s)
- Hamideh Kouhpaikar
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hadi Sadeghian
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohaddeseh Kazemi
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Department of Pharmacognosy and Biotechnology, Biotechnology Research Center, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Delbari
- Inflammation and Inflammatory Diseases Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Khodadadi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Ayatollahi
- Cancer Molecular Pathology Research Center, Department of Hematology and Blood Bank, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B. Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
5
|
Gao W, Li L, Zhang X, Luo L, He Y, Cong C, Gao D. Nanomagnetic liposome-encapsulated parthenolide and indocyanine green for targeting and chemo-photothermal antitumor therapy. Nanomedicine (Lond) 2020; 15:871-890. [PMID: 32223505 DOI: 10.2217/nnm-2019-0038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: To synthesize a drug-delivery system with chemo-photothermal function and magnetic targeting, to validate its antitumor effect. Materials & methods: Parthenolide (PTL), employing chemotherapy and indocyanine green (ICG) providing phototherapy, were encased separately in the lipid and aqueous phases of liposomes (Lips). The Fe3O4 nanoparticles (MNPs), endowing magnetic targeting, were modified on the surface of Lips. The antitumor effects were investigated in vitro and in vivo. Results: ICG-PTL-Lips@MNPs showed outstanding synergistic antitumor efficacy in vitro and in vivo. Especially, after 14-day treatment, the tumor volumes decreased significantly and the biotoxicity was very low. Conclusion: The designed ICG-PTL-Lips@MNPs possess synergistic effects of chemotherapy, photothermal and targeting therapy, which are expected to provide an alternative way to further improve antitumor efficacy.
Collapse
Affiliation(s)
- Wenbin Gao
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Lei Li
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Xuwu Zhang
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Liyao Luo
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Yuchu He
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China
| | - Cong Cong
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,Hebei Province Asparagus Industry Technology Research Institute, No. 12 Donghai Road, Qinhuangdao, 066318, PR China
| | - Dawei Gao
- Applying Chemistry Key Laboratory of Hebei Province, Department of Bioengineer, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,State Key Laboratory of Metastable Materials Science & Technology, Yanshan University, No. 438 Hebei Street, Qinhuangdao, 066004, PR China.,Hebei Province Asparagus Industry Technology Research Institute, No. 12 Donghai Road, Qinhuangdao, 066318, PR China
| |
Collapse
|
6
|
Flores-Lopez G, Moreno-Lorenzana D, Ayala-Sanchez M, Aviles-Vazquez S, Torres-Martinez H, Crooks PA, Guzman ML, Mayani H, Chávez-González A. Parthenolide and DMAPT induce cell death in primitive CML cells through reactive oxygen species. J Cell Mol Med 2018; 22:4899-4912. [PMID: 30079458 PMCID: PMC6156390 DOI: 10.1111/jcmm.13755] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022] Open
Abstract
Tyrosine kinase inhibitors (TKI) have become a first-line treatment for chronic myeloid leuakemia (CML). TKIs efficiently target bulk CML cells; however, they are unable to eliminate the leukaemic stem cell (LSC) population that causes resistance and relapse in CML patients. In this study, we assessed the effects of parthenolide (PTL) and dimethyl amino parthenolide (DMAPT), two potent inhibitors of LSCs in acute myeloid leukaemia (AML), on CML bulk and CML primitive (CD34+ lin- ) cells. We found that both agents induced cell death in CML, while having little effect on the equivalent normal hematopoietic cells. PTL and DMAPT caused an increase in reactive oxygen species (ROS) levels and inhibited NF-κB activation. PTL and DMAPT inhibited cell proliferation and induced cell cycle arrest in G0 and G2 phases. Furthermore, we found cell cycle inhibition to correlate with down-regulation of cyclin D1 and cyclin A. In summary, our study shows that PTL and DMAPT have a strong inhibitory effect on CML cells. Given that cell cycle arrest was not dependent on ROS induction, we speculate that this effect could be a direct consequence of NF-κB inhibition and if this mechanism was to be evaded, PTL and DMAPT induced cell death would be potentiated.
Collapse
Affiliation(s)
- Gabriela Flores-Lopez
- Leukemic Stem Cells Lab, Oncology Research Unit, Mexican Institute of Social Security, Oncology Hospital, "Siglo XXI" National Medical Center, Mexico City, Mexico
| | - Dafne Moreno-Lorenzana
- Leukemic Stem Cells Lab, Oncology Research Unit, Mexican Institute of Social Security, Oncology Hospital, "Siglo XXI" National Medical Center, Mexico City, Mexico
| | - Manuel Ayala-Sanchez
- Hematology Department & BMT Unit, Medical Specialties Hospital, "La Raza" Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | | | - Hector Torres-Martinez
- Department of Hip Surgery, Mexican Institute of Social Security, "Villa Coapa" General Hospital, Mexico City, Mexico
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Monica L Guzman
- Division of Hematology/Medical Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Hector Mayani
- Hematopoietic Stem Cells Lab, Oncology Research Unit, Mexican Institute of Social Security, Oncology Hospital, "Siglo XXI" National Medical Center, Mexico City, Mexico
| | - Antonieta Chávez-González
- Leukemic Stem Cells Lab, Oncology Research Unit, Mexican Institute of Social Security, Oncology Hospital, "Siglo XXI" National Medical Center, Mexico City, Mexico
| |
Collapse
|
7
|
Down‐regulation of intracellular anti‐apoptotic proteins, particularly c‐FLIP by therapeutic agents; the novel view to overcome resistance to TRAIL. J Cell Physiol 2018; 233:6470-6485. [DOI: 10.1002/jcp.26585] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/08/2018] [Indexed: 12/24/2022]
|
8
|
Jin Y, Qiu S, Shao N, Zheng J. Fucoxanthin and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Synergistically Promotes Apoptosis of Human Cervical Cancer Cells by Targeting PI3K/Akt/NF-κB Signaling Pathway. Med Sci Monit 2018; 24:11-18. [PMID: 29291370 PMCID: PMC5759513 DOI: 10.12659/msm.905360] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Fucoxanthin is a carotenoid present in the chloroplasts of brown seaweeds. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a cytokine that selectively induces apoptosis in many tumor cells and is an attractive candidate for antitumor therapies. Material/Methods After human cervical cancer cell lines HeLa, SiHa, and CaSki were treated with fucoxanthin or TRAIL. Cell viability was determined by 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-2-tetrazolium 5-carboxanilide (XTT) method. Apoptosis was measured by flow cytometry (FCM). Protein expression of phosphatidylinositol 3 kinase (PI3K), protein kinase B (Akt), phosphated Akt (p-Akt), NF-κB nuclear factor-k-gene binding (NF-κB). Phosphated nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (p-IκBa), was measured by Western blot analysis. mRNA expression of Bax and Bcl2 was measured by RNA preparation and quantitative reverse transcription polymerase chain reaction (RT-PCR). Results In the present study, the effectiveness in terms of apoptosis was as follows: TRAIL plus fucoxanthin>fucoxanthin>TRAIL, indicating the combination of fucoxanthin and TRAIL, produced a strong synergistic effect on apoptosis in human cervical cancer cells. Additionally, we found that upstream signaling PI3K/Akt and NF-κB pathways-mediated cell apoptosis was activated by TRAIL and suppressed by fucoxanthin. By using PI3K and NF-κB inhibitors LY49002 and PDTC, we found that fucoxanthin- or TRAIL-induced apoptosis of human cervical cancer cells was obviously down-regulated. Conclusions Taken together, these findings suggest that fucoxanthin and TRAIL increased the apoptosis in human cervical cancer cells by targeting the PI3K/Akt/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ye Jin
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Shuang Qiu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Na Shao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| | - Jianhua Zheng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China (mainland)
| |
Collapse
|
9
|
Kim SL, Kim SH, Park YR, Liu YC, Kim EM, Jeong HJ, Kim YN, Seo SY, Kim IH, Lee SO, Lee ST, Kim SW. Combined Parthenolide and Balsalazide Have Enhanced Antitumor Efficacy Through Blockade of NF-κB Activation. Mol Cancer Res 2016; 15:141-151. [PMID: 28108625 DOI: 10.1158/1541-7786.mcr-16-0101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022]
Abstract
Balsalazide is a colon-specific prodrug of 5-aminosalicylate that is associated with a reduced risk of colon cancer in patients with ulcerative colitis. Parthenolide, a strong NF-κB inhibitor, has recently been demonstrated to be a promising therapeutic agent, promoting apoptosis of cancer cells. In the current study, the antitumor effect of balsalazide combined with parthenolide in human colorectal cancer cells and colitis-associated colon cancers (CAC) was investigated. The results demonstrate that the combination of balsalazide and parthenolide markedly suppress proliferation, nuclear translocation of NF-κB, IκB-α phosphorylation, NF-κB DNA binding, and expression of NF-κB targets. Apoptosis via NF-κB signaling was confirmed by detecting expression of caspases, p53 and PARP. Moreover, treatment of a CAC murine model with parthenolide and balsalazide together resulted in significant recovery of body weight and improvement in histologic severity. Administration of parthenolide and balsalazide to CAC mice also suppressed carcinogenesis as demonstrated by uptake of 18F-fluoro-2-deoxy-D-glucose (FDG) using micro-PET/CT scans. These results demonstrate that parthenolide potentiates the efficacy of balsalazide through synergistic inhibition of NF-κB activation and the combination of dual agents prevents colon carcinogenesis from chronic inflammation. IMPLICATIONS This study represents the first evidence that combination therapy with balsalazide and parthenolide could be a new regimen for colorectal cancer treatment. Mol Cancer Res; 15(2); 141-51. ©2016 AACR.
Collapse
Affiliation(s)
- Se-Lim Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Seong Hun Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Young Ran Park
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Yu-Chuan Liu
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Eun-Mi Kim
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Yo Na Kim
- Department of Pathology, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Seung Young Seo
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - In Hee Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Sang-Wook Kim
- Department of Internal Medicine, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea.
| |
Collapse
|
10
|
Yang T, Xu Z, Liu W, Xu B, Deng Y. Protective effects of Alpha-lipoic acid on MeHg-induced oxidative damage and intracellular Ca2+dyshomeostasis in primary cultured neurons. Free Radic Res 2016; 50:542-56. [DOI: 10.3109/10715762.2016.1152362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
SOPHONNITHIPRASERT THANET, NILWARANGKOON SIRINUN, NAKAMURA YUKIO, WATANAPOKASIN RAMIDA. Goniothalamin enhances TRAIL-induced apoptosis in colorectal cancer cells through DR5 upregulation and cFLIP downregulation. Int J Oncol 2015; 47:2188-96. [DOI: 10.3892/ijo.2015.3204] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/24/2015] [Indexed: 11/05/2022] Open
|
12
|
Kim HY, Kim SL, Park YR, Liu YC, Seo SY, Kim SH, Kim IH, Lee SO, Lee ST, Kim SW. Balsalazide Potentiates Parthenolide-Mediated Inhibition of Nuclear Factor-κB Signaling in HCT116 Human Colorectal Cancer Cells. Intest Res 2015; 13:233-41. [PMID: 26130998 PMCID: PMC4479738 DOI: 10.5217/ir.2015.13.3.233] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/16/2014] [Accepted: 12/29/2014] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND/AIMS Balsalazide is an anti-inflammatory drug used in the treatment of inflammatory bowel disease. Balsalazide can reduce inflammatory responses via several mechanisms, including inhibition of nuclear factor-κB (NF-κB) activity. Parthenolide (PT) inhibits NF-κB and exerts promising anticancer effects by promoting apoptosis. The present investigated the antitumor effects of balsalazide, combined with PT, on NF-κB in a representative human colorectal carcinoma cell line, HCT116. METHODS We counted cells and conducted annexin-V assays and cell cycle analysis to measure apoptotic cell death. Western blotting was used investigate the levels of proteins involved in apoptosis. RESULTS PT and balsalazide produced synergistic anti-proliferative effects and induced apoptotic cell death. The combination of balsalazide and PT markedly suppressed nuclear translocation of the NF-κB p65 subunit and the phosphorylation of inhibitor of NF-κB. Moreover, PT and balsalazide dramatically enhanced NF-κB p65 phosphorylation. Apoptosis, through the mitochondrial pathway, was confirmed by detecting effects on Bcl-2 family members, cytochrome c release, and activation of caspase-3 and -8. CONCLUSIONS Combination treatment with PT and balsalazide may offer an effective strategy for the induction of apoptosis in HCT116 cells.
Collapse
Affiliation(s)
- Hyun-Young Kim
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea
| | - Se-Lim Kim
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea. ; Colon Carcinogenesis and Inflammation Laboratory, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Young-Ran Park
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea. ; Colon Carcinogenesis and Inflammation Laboratory, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Yu-Chuan Liu
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea. ; Colon Carcinogenesis and Inflammation Laboratory, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Seung Young Seo
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea
| | - Seong Hun Kim
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea
| | - In Hee Kim
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea
| | - Seung Ok Lee
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea
| | - Soo Teik Lee
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea. ; Colon Carcinogenesis and Inflammation Laboratory, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| | - Sang Wook Kim
- Department of Internal Medicine, Medical School of Chonbuk National University, Jeonju, Korea. ; Colon Carcinogenesis and Inflammation Laboratory, Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, Korea
| |
Collapse
|
13
|
Sesquiterpene lactones of Moquiniastrum polymorphum subsp. floccosum have antineoplastic effects in Walker-256 tumor-bearing rats. Chem Biol Interact 2015; 228:46-56. [DOI: 10.1016/j.cbi.2015.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/05/2015] [Accepted: 01/12/2015] [Indexed: 01/14/2023]
|