1
|
Chow LH, Ahyong ST, Tsang CTT, Lam YF, Naruse T, Ng PKL, Tsang LM. Shift in symbiotic lifestyle as the major process shaping the evolution of pea crabs (Decapoda: Brachyura: Pinnotheroidea). Mol Phylogenet Evol 2023; 188:107904. [PMID: 37579893 DOI: 10.1016/j.ympev.2023.107904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
The pea crabs, superfamily Pinnotheroidea, are exceptional among brachyuran crabs in their diverse symbiotic associations involving both inquilinism and protective symbiosis. While this group presents a rare opportunity for evolutionary comparative study of host switching and morphological evolution in marine macroinvertebrates, previous phylogenetic studies have been focused on systematics. Here, we reconstructed the most extensive phylogeny of Pinnotheroidea based on two mitochondrial and six nuclear markers, with the aim of elucidating the host switching pathways and the correlation between symbiotic lifestyles and selected morphological adaptations. Ancestral state reconstruction of host association revealed a monophyletic origin of symbiosis in the form of inquilinism. Subsequent shifts in microhabitat preference for burrows or worm tubes, and the move to protective symbiosis, primarily in the switch to mollusc endosymbiosis, contributed to radiation in Pinnotheridae. Further parallel colonisations of echinoderms and tunicates occurred but did not lead to extensive diversification, except in the Clypeasterophilus + Dissodactylus lineage, which experienced a unique switch to echinoderm ectosymbiosis. The evolution of the third maxillipeds, carapace shape and ambulatory pereiopods suggests a rather strong coupling with the symbiotic lifestyle (whether inquilinism or protective symbiosis). Phenotypic diversity of these characters was higher among species engaged in protective symbiosis, with convergence in form (or function) among those sharing the same host affiliation. Species having different host affiliations or symbiotic lifestyles might also exhibit convergence in the form of the three morphological traits, suggesting a common adaptive value of the specialisations. Pinnotherid crabs overall exhibited a lower trait diversity than the also symbiotic palaemonid shrimps with comparable species diversity. This may plausibly be attributed to differences in potential for morphological modification to serve additional functions among the traits analysed in the two groups, the less frequent host switching and the less diverse host affiliations, and thus a less complicated evolutionary history in pinnotherids.
Collapse
Affiliation(s)
- Lai Him Chow
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shane T Ahyong
- Australian Museum Research Institute, 1 William St, Sydney, NSW 2010, Australia; School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW 2052, Australia
| | - Chandler T T Tsang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yu Fung Lam
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Tohru Naruse
- Tropical Biosphere Research Center, Iriomote Station, University of the Ryukyus, 870 Uehara, Taketomi, Okinawa 907-1541, Japan
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, Faculty of Science, National University of Singapore, Kent Ridge, Singapore 119260, Singapore
| | - Ling Ming Tsang
- Simon F.S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
2
|
de Gier W. Phylomorphometrics reveal ecomorphological convergence in pea crab carapace shapes (Brachyura, Pinnotheridae). Ecol Evol 2023; 13:e9744. [PMID: 36694551 PMCID: PMC9842789 DOI: 10.1002/ece3.9744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Most members of the speciose pea crab family (Decapoda: Brachyura: Pinnotheridae) are characterized by their symbioses with marine invertebrates in various host phyla. The ecology of pea crabs is, however, understudied, and the degree of host dependency of most species is still unclear. With the exception of one lineage of ectosymbiotic echinoid-associated crabs, species within the subfamily Pinnotherinae are endosymbionts, living within the body cavities of mollusks, ascidians, echinoderms, and brachiopods. By contrast, most members of the two other subfamilies are considered to have an ectosymbiotic lifestyle, sharing burrows and tubes with various types of worms and burrowing crustaceans (inquilism). The body shapes within the family are extremely variable, mainly in the width and length of the carapace. The variation of carapace shapes in the family, focusing on pinnotherines, is mapped using landmark-based morphometrics. Mean carapace shapes of species groups (based on their host preference) are statistically compared. In addition, a phylomorphometric approach is used to study three different convergence events (across subfamilies; between three genera; and within one genus), and link these events with the associated hosts.
Collapse
Affiliation(s)
- Werner de Gier
- Naturalis Biodiversity CenterLeidenThe Netherlands
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|