1
|
Abbasi R, Alamdari-Mahd G, Maleki-Kakelar H, Momen-Mesgin R, Ahmadi M, Sharafkhani M, Rezaie J. Recent advances in the application of engineered exosomes from mesenchymal stem cells for regenerative medicine. Eur J Pharmacol 2025; 989:177236. [PMID: 39753159 DOI: 10.1016/j.ejphar.2024.177236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/14/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Exosomes, cell-derived vesicles produced by cells, are fascinating and drawing growing interest in biomedical exploration due to their exceptional properties. There is intriguing evidence that exosomes are involved in major biological processes, including diseases and regeneration. Exosomes from mesenchymal stem cells (MSCs) have shown promising outcomes in regenerative medicine. Numerous studies suggest that exosomes have several advantages over conventional synthetic nanocarriers, opening novel frontiers for innovative drug delivery. Regenerative medicine has demonstrated the profound therapeutic outcomes of engineered or loaded exosomes from MSCs. Different methods are being used to modify or/load exosomes. These exosomes can improve cell signaling pathways for bone and cartilage diseases, liver diseases, nerve tissues, kidney diseases, skin tissue, and cardiovascular diseases. Despite extensive research, clinical translation of these exosomes remains a challenge. The optimization of cargo loading methods, efficiency, physiological stability, and the isolation and characterization of exosomes present some challenges. The upcoming examination should include the development of large-scale, quality-controllable production approaches, the modification of drug loading approaches, and numerous in vivo investigations and clinical trials. Here, we provided an informative overview of the extracellular vesicles and modification/loading methods of exosomes. We discuss the last exosome research on regeneration disorders, highlighting the therapeutic applications of MSCs-derived exosomes. We also highlight future directions and challenges, underscoring the significance of addressing the main questions in the field.
Collapse
Affiliation(s)
- Reza Abbasi
- Department of Biology, Urmia University, Urmia, Iran
| | - Ghazal Alamdari-Mahd
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | | | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohaddeseh Sharafkhani
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Sadeghi M, Tavakol Afshari J, Fadaee A, Dashti M, Kheradmand F, Dehnavi S, Mohammadi M. Exosomal miRNAs involvement in pathogenesis, diagnosis, and treatment of rheumatoid arthritis. Heliyon 2025; 11:e41983. [PMID: 39897907 PMCID: PMC11786886 DOI: 10.1016/j.heliyon.2025.e41983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/18/2024] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
Rheumatoid arthritis (RA) is the most common chronic autoimmune arthropathy worldwide. The initiation, and progression of RA involves multiple cellular and molecular pathways, and biological interactions. Micro RNAs (miRNAs) are characterized as a class of small non-coding RNAs that influence gene expression at the post-transcriptional level. Exosomes are biological nano-vesicles that are secreted by different types of cells. They facilitate communication and signalling between cells by transferring a variety of biological substances, such as proteins, lipids, and nucleic acids like mRNA and miRNA. Exosomal miRNAs were shown to be involved in normal and pathological conditions. In RA, deregulated exosomal miRNA expression was observed to be involved in the intercellular communication between synovial cells, and inflammatory or regulatory immune cells. Furthermore, circulating exosomal miRNAs were introduced as available diagnostic and prognostic biomarkers for RA pathology. The current review categorized and summarized dysregulated pathologically involved and circulating exosomal miRNAs in the context of RA. It highlighted present situation and future perspective of using exosomal miRNAs as biomarkers and a specific gene therapy approach for RA treatment.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Afsane Fadaee
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Dashti
- Kashmar School of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Kheradmand
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojgan Mohammadi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Sadeghi M, Dehnavi S, Khodadadi A, Ghadiri AA, Ganji A, Sharifat M, Asadirad A. Immunomodulatory features of MSC-derived exosomes decorated with DC-specific aptamer for improving sublingual immunotherapy in allergic mouse model. Stem Cell Res Ther 2024; 15:481. [PMID: 39696650 DOI: 10.1186/s13287-024-04099-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION Sublingual immunotherapy (SLIT) is an effective and injection-free route for allergen-specific immunotherapy (AIT). Mesenchymal stromal/stem cell (MSC)-derived exosomes (Exo) has been identified as a novel delivery platform with immunomodulatory capacities. In addition, targeting agents such as aptamers (Apt) have been extensively used for specific delivery approaches such as direct delivery of allergen formulations to dendritic cells (DC) to improve the efficacy of specific immunotherapy. In this study, we assessed the effects of MSC-derived Exos containing ovalbumin (Ova) which decorated with DC-specific aptamer in allergic rhinitis mice model. MATERIALS AND METHODS Exos were harvested from adipose tissue-derived MSCs, and Exo-Apt-Ova complex was formulated. Then, Ova-induced allergic asthma model was simulated and sensitized BALB/c mice were treated sublingually with Exo-Apt-Ova complex (5 µg Ova) twice weekly for 8 weeks. Ova-specific IgE levels in serum and concentrations of interferon-gamma (IFN-γ), interleukin (IL)-4, and transforming growth factor-beta (TGF-β) in the supernatant of cultured splenocytes were evaluated using enzyme-linked immunosorbent assay (ELISA). In addition, lung histologic analysis and nasopharyngeal lavage fluid (NALF) cell count were performed. RESULTS Administration of Ova-incorporated Apt-modified Exos dramatically increased IFN-γ and TGF-β levels, and decreased IL-4 and IgE levels. In addition, inflammatory responses in the lung tissue and the number of eosinophils in NALF decreased. CONCLUSION SLIT using Exo-Ova (5 µg) decorated with DC-specific aptamer induced immunomodulatory responses and remarkably attenuated allergic airway inflammation in mice.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sajad Dehnavi
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Khodadadi
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata A Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Ganji
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Moosa Sharifat
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Asadirad
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
4
|
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, Kulkarni M, Shen B, Singla RK. Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156087. [PMID: 39388922 DOI: 10.1016/j.phymed.2024.156087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Plant-derived exosomes (PDEs), are nanoscale vesicles secreted by multivesicular bodies, play pivotal roles in critical biological processes, including gene regulation, cell communication, and immune defense against pathogens. Recognized for their potential health-promoting properties, PDEs are emerging as innovative components in functional nutrition, poised to enhance dietary health benefits. PURPOSE To describe the efficacy of PDEs in nanoform and their application as precision therapy in many disorders. STUDY DESIGN The design of this review was carried out in PICO format using randomized clinical trials and research articles based on in vivo and in vitro studies. METHODS All the relevant clinical and research studies conducted on plant-derived nanovesicle application and efficacy were included, as retrieved from PubMed and Cochrane, after using specific search terms. This review was performed to determine PDEs' efficacy as nanomedicine and precision therapy. Sub-group analysis and primary data were included to determine the relationship with PDEs. RESULT PDEs are extracted from plant materials using sophisticated techniques like precipitation, size exclusion, immunoaffinity capture, and ultracentrifugation, encapsulating vital molecules such as lipids, proteins, and predominantly microRNAs. Although their nutritional impact may be minimal in small quantities, the broader application of PDEs in biomedicine, particularly as vehicles for drug delivery, underscores their significance. They offer a promising strategy to improve the bioavailability and efficacy of therapeutic agents carrying nano-bioactive substances that exhibit anti-inflammatory, antioxidant, cardioprotective, and anti-cancer activities. CONCLUSION PDEs enhance the therapeutic potency of plant-derived phytochemicals, supporting their use in disease prevention and therapy. This comprehensive review explores the multifaceted aspects of PDEs, including their isolation methods, biochemical composition, health implications, and potential to advance medical and nutritional interventions.
Collapse
Affiliation(s)
- Min Zheng
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; West China Tianfu Hospital, Sichuan University, Chengdu, Sichuan, 610218, China
| | - Vivek P Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M College of Pharmacy, Ahmedabad 380009, Gujrat, India.
| | - Dixa A Vaghela
- Pharmacy section, L.M College of Pharmacy Ahmedabad 380009, Gujrat, India
| | - Rajashri Bezbaruah
- Department of Pharmacology, Dibrugarh University, Dibrugarh 786004, Assam
| | - Niva Rani Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, Assam
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India
| | - Mangesh Kulkarni
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, LJ University, Ahmedabad 382210, Gujarat, India; Department of Pharmaceutics, Gandhinagar Institute of Pharmacy, Gandhinagar University, Moti Bhoyan, Khatraj-Kalol Road 382721, Gujarat, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Rajeev K Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India.
| |
Collapse
|
5
|
Sadeghi M, Mohammadi M, Tavakol Afshari J, Iranparast S, Ansari B, Dehnavi S. Therapeutic potential of mesenchymal stem cell-derived exosomes for allergic airway inflammation. Cell Immunol 2024; 397-398:104813. [PMID: 38364454 DOI: 10.1016/j.cellimm.2024.104813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Due to their immunomodulatory capacities, mesenchymal stem cells (MSCs) have been extensively used as therapeutic approaches in cell-based therapy for various inflammatory diseases. Several lines of studies have shown that the most beneficial effects of MSCs are associated with MSC-derived exosomes. Exosomes are nanoscale extracellular vesicles that contain important biomolecules such as RNA, microRNAs (miRNAs), DNA, growth factors, enzymes, chemokines, and cytokines that regulate immune cell functions and parenchymal cell survival. Recently, exosomes, especially MSC-derived exosomes, have been shown to have protective effects in allergic airway inflammation. This review focused on the immune-regulatory potential of MSC-derived exosomes as nanoscale delivery systems in the treatment of allergic airway inflammation.
Collapse
Affiliation(s)
- Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jalil Tavakol Afshari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Iranparast
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Bahareh Ansari
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Asadirad A, Ghadiri AA, Amari A, Ghasemi Dehcheshmeh M, Sadeghi M, Dehnavi S. Sublingual prophylactic administration of OVA-loaded MSC-derived exosomes to prevent allergic sensitization. Int Immunopharmacol 2023; 120:110405. [PMID: 37270928 DOI: 10.1016/j.intimp.2023.110405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/20/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
AIM This study evaluated the immunomodulatory and delivery potential of adipose tissue-isolated MSC-derived exosomes as a prophylactic regimen through a sublingual route in the ovalbumin (OVA)-induced allergic asthma murine model. MATERIAL AND METHODS Balb/c mice received 10 μg/dose of OVA-enriched MSC-derived exosomes as a prophylactic regimen in six doses during three weeks, and then OVA sensitization was conducted through intraperitoneal and aerosol administration of allergen. The total cells and eosinophils counted in nasal lavage fluid (NALF) and lung tissues were assessed for histopathological analysis. In addition, the secretion of IFN-γ, IL-4, and TGF-β by spleen cells and serum OVA-specific IgE levels were measured via ELISA. RESULTS Significant reduction in the IgE levels and IL-4 production, along with elevated TGF-β levels, were observed. Also, limited cellular infiltrations and perivascular and peribronchiolar inflammation in the lung tissues and normal total numbers of cells and eosinophils in the NALF were reported. CONCLUSION Prophylactic regimen using OVA-enriched MSC-derived exosomes modulated immune responses and inhibited allergic OVA sensitization.
Collapse
Affiliation(s)
- Ali Asadirad
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Petroleum and Environmental Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ata A Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afshin Amari
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahvash Sadeghi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Sajad Dehnavi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|