1
|
Sharma P, Kumar Singh A, Senapati S, Singh Kapoor H, Devi Goyal L, Kaur B, Kamra P, Khetarpal P. Genetic Variants of Steroidogenesis and Gonadotropin Pathways and Polycystic Ovary Syndrome Susceptibility: A Systematic Review and Meta-analysis. Metab Syndr Relat Disord 2024; 22:15-26. [PMID: 37878274 DOI: 10.1089/met.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Genetic variants are predisposing factors to polycystic ovary syndrome (PCOS), a multifactorial condition that often gets triggered due to various environmental factors. The study investigates the association of the variants of genes that are involved in the steroidogenesis pathway or gonadotropin pathway with the risk of PCOS. Appropriate keywords for predetermined genes were used to search in PubMed, Google Scholar, Science Direct, and Central Cochrane Library up to January 11, 2023. PROSPERO (CRD42022275425). Inclusion criteria: (a) case-control study; (b) genotype or allelic data. Exclusion criteria were: (a) duplicate studies; (b) clinical trials, systematic reviews, meta-analysis or conference abstract, case reports; (c) other than the English language; (d) having insufficient data; e) genetic variants for which meta-analysis has been reported recently and does not have a scope of the update. Various genetic models were applied as per data availability. Overall 12 variants of 7 genes were selected for the analysis. Relevant data were extracted from 47 studies which include 10,584 PCOS subjects and 16,150 healthy controls. Meta-analysis indicates a significant association between TOX3 rs4784165 [ORs = 1.08, 95% CI (1.00-1.16)], HMGA2 rs2272046 [ORs = 2.73, 95% CI (1.97-3.78)], YAP1 rs1894116 [OR = 1.22, 95% CI (1.13-1.33)] and increased risk of PCOS. Whereas FSHR rs2268361 [ORs = 0.84, 95% CI (0.78-0.89)] is associated with decreased PCOS risk. When sensitivity analysis was carried out, the association became significant for CYP19 rs700519 and FSHR rs6165 under an additive model. In addition, C9Orf3 rs3802457 became significantly associated with decreased PCOS risk with the removal of one study. Insignificant association was observed for CYP19A (rs2470152), FSHR (rs2349415, rs6166), C9Orf3 (rs4385527), GnRH1 (rs6185) and risk of PCOS. Our findings suggest association of CYP19A (rs700519), TOX3 (rs4784165), HMGA2 (rs2272046), FSHR (rs6165, rs2268361), C9orf3 (rs3802457), and YAP1 (rs1894116) with risk for PCOS.
Collapse
Affiliation(s)
- Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Abhilash Kumar Singh
- Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Science, Central University of Punjab, Bathinda, India
| | | | - Lajya Devi Goyal
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, India
| | - Balpreet Kaur
- Department of Obstetrics and Gynaecology, AIIMS, Bathinda, India
| | - Pooja Kamra
- Department of Obstetrics and Gynaecology, Kamra Hospital, Malout, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Postolache TT, Al Tinawi QM, Gragnoli C. The melatonin receptor genes are linked and associated with the risk of polycystic ovary syndrome. J Ovarian Res 2024; 17:17. [PMID: 38217063 PMCID: PMC10787433 DOI: 10.1186/s13048-024-01343-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a genetically complex disorder that involves the interplay of multiple genes and environmental factors. It is characterized by anovulation and irregular menses and is associated with type 2 diabetes. Neuroendocrine pathways and ovarian and adrenal dysfunctions are possibly implicated in the disorder pathogenesis. The melatonin system plays a role in PCOS. Melatonin receptors are expressed on the surface of ovarian granulosa cells, and variations in the melatonin receptor genes have been associated with increased risk of PCOS in both familial and sporadic cases. We have recently reported the association of variants in MTNR1A and MTNR1B genes with familial type 2 diabetes. In this study, we aimed to investigate whether MTNR1A and MTNR1B contribute to PCOS risk in peninsular families. In 212 Italian families phenotyped for PCOS, we amplified by microarray 14 variants in the MTNR1A gene and 6 variants in the MTNR1B gene and tested them for linkage and linkage disequilibrium with PCOS. We detected 4 variants in the MTNR1A gene and 2 variants in the MTNR1B gene significantly linked and/or in linkage disequilibrium with the risk of PCOS (P < 0.05). All variants are novel and have not been reported before with PCOS or any of its related phenotypes, except for 3 variants previously reported by us to confer risk for type 2 diabetes and 1 variant for type 2 diabetes-depression comorbidity. These findings implicate novel melatonin receptor genes' variants in the risk of PCOS with potential functional roles.
Collapse
Affiliation(s)
- Teodor T Postolache
- Mood and Anxiety Program, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
- Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Consortium for Research and Education (MVM-CoRE), Denver, CO, 80246, USA
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Integrated Service Network (VISN) 5, VA Capitol Health Care Network, Baltimore, MD, 21090, USA
| | - Qamar M Al Tinawi
- Department of Medicine, Creighton University School of Medicine, Omaha, NE, 68124, USA
| | - Claudia Gragnoli
- Department of Medicine, Creighton University School of Medicine, Omaha, NE, 68124, USA.
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE, 68124, USA.
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, 00197, Italy.
| |
Collapse
|
3
|
Kicińska AM, Maksym RB, Zabielska-Kaczorowska MA, Stachowska A, Babińska A. Immunological and Metabolic Causes of Infertility in Polycystic Ovary Syndrome. Biomedicines 2023; 11:1567. [PMID: 37371662 PMCID: PMC10295970 DOI: 10.3390/biomedicines11061567] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Infertility has been recognized as a civilizational disease. One of the most common causes of infertility is polycystic ovary syndrome (PCOS). Closely interrelated immunometabolic mechanisms underlie the development of this complex syndrome and lead to infertility. The direct cause of infertility in PCOS is ovulation and implantation disorders caused by low-grade inflammation of ovarian tissue and endometrium which, in turn, result from immune and metabolic system disorders. The systemic immune response, in particular the inflammatory response, in conjunction with metabolic disorders, insulin resistance (IR), hyperadrenalism, insufficient secretion of progesterone, and oxidative stress lead not only to cardiovascular diseases, cancer, autoimmunity, and lipid metabolism disorders but also to infertility. Depending on the genetic and environmental conditions as well as certain cultural factors, some diseases may occur immediately, while others may become apparent years after an infertility diagnosis. Each of them alone can be a significant factor contributing to the development of PCOS and infertility. Further research will allow clinical management protocols to be established for PCOS patients experiencing infertility so that a targeted therapy approach can be applied to the factor underlying and driving the "vicious circle" alongside symptomatic treatment and ovulation stimulation. Hence, therapy of fertility for PCOS should be conducted by interdisciplinary teams of specialists as an in-depth understanding of the molecular relationships and clinical implications between the immunological and metabolic factors that trigger reproductive system disorders is necessary to restore the physiology and homeostasis of the body and, thus, fertility, among PCOS patients.
Collapse
Affiliation(s)
- Aleksandra Maria Kicińska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Radoslaw B. Maksym
- 1st Department of Obstetrics and Gynecology, Centre for Postgraduate Medical Education, ul. Żelazna 90, 02-004 Warsaw, Poland;
| | - Magdalena A. Zabielska-Kaczorowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland
| | - Aneta Stachowska
- Department of Physiology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80-210 Gdansk, Poland; (A.M.K.); (M.A.Z.-K.)
| | - Anna Babińska
- Department of Endocrinology and Internal Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
4
|
Analyzing the Impact of FSHR Variants on Polycystic Ovary Syndrome-a Case-Control Study in Punjab. Reprod Sci 2023:10.1007/s43032-023-01194-z. [PMID: 36821034 DOI: 10.1007/s43032-023-01194-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/05/2023] [Indexed: 02/24/2023]
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine-metabolic syndrome that involves hyperandrogenism, menstrual irregularities, and/or small cysts in one or both ovaries which might lead to infertility in women. The genetics of PCOS is heterogenous with the involvement of several genes reported in the hypothalamic-pituitary-gonadal axis. Follicular growth and steroidogenesis regulation are both critically dependent on follicle-stimulating hormone (FSH). The variants of FSHR cause abnormal folliculogenesis, steroidogenesis, and oocyte maturation at various stages of growth and may render women more susceptible to PCOS development. The present case-control study evaluated the association of FSHR rs6165 and rs6166 variants with PCOS. A total of 743 females were recruited. PCR-RFLP method was used for the genotypic analysis of FSHR polymorphisms. Obesity was examined according to the categorization of body mass index (BMI) and waist-hip ratio (WHR). Biochemical analysis, including a lipid profile, LH, FSH, and testosterone levels, was done in both PCOS women and controls. BMI and WHR revealed a statistically significant difference between PCOS cases and controls. Overall, levels of HDL were significantly lower, whereas cholesterol, triglycerides, LDL, and VLDL levels were higher in PCOS women (p < 0.05). The genotypic and allelic frequencies of rs6165 and rs6166 did not demonstrate significant differences when PCOS women were compared with the control group. However, clinical features of PCOS including gonadotropic hormone (FSH), hyperandrogenism, and dyslipidemia were significantly correlated with variants of FSHR. The present study concludes that rs6165 and rs6166 were significantly related to clinical features of PCOS, regardless of providing direct disease risk.
Collapse
|
5
|
Scarfò G, Daniele S, Fusi J, Gesi M, Martini C, Franzoni F, Cela V, Artini PG. Metabolic and Molecular Mechanisms of Diet and Physical Exercise in the Management of Polycystic Ovarian Syndrome. Biomedicines 2022; 10:biomedicines10061305. [PMID: 35740328 PMCID: PMC9219791 DOI: 10.3390/biomedicines10061305] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is an endocrine systemic disorder mainly characterized by a hormonal and metabolic disbalance that leads to oligo/anovulation, hyperandrogenism and the formation of ovarian cysts. Despite the progress that has been reached in its diagnosis and management, little is known about the molecular mechanisms and signaling pathways underlying the pathogenic mechanisms. In this sense, recent research has suggested that the influence of multiple factors, including age, environment, lifestyle and the disease state environment can change the clinical presentation of PCOS via epigenetic modifications. Variants in the genes encoding for proteins involved in steroidogenesis and glucose homeostasis play a crucial role in the development of the disease. Other genes involved in inflammation and cell proliferation seem to undergo an epigenetic control. Moreover, lifestyle factors influence the PCOS course and prognosis, including diet and physical activity, which are fundamental in reducing oxidative stress, inflammation and in improving metabolic and hormonal parameters. In the present review, literature evidence on molecular and epigenetic mechanisms related to PCOS etiology will be discussed, with a particular attention on the positive influence of diet and physical activity as nonpharmacological ways of intervention in the management of the disease.
Collapse
Affiliation(s)
- Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (S.D.); (P.G.A.); Tel.: +39-050-2219608 (S.D.); +39-050-554104 (P.G.A.)
| | - Jonathan Fusi
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Marco Gesi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy;
| | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (J.F.); (F.F.)
| | - Vito Cela
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
- Correspondence: (S.D.); (P.G.A.); Tel.: +39-050-2219608 (S.D.); +39-050-554104 (P.G.A.)
| |
Collapse
|
6
|
Liu YN, Qin Y, Wu B, Peng H, Li M, Luo H, Liu LL. DNA Methylation in Polycystic Ovary Syndrome:Emerging Evidence and Challenges. Reprod Toxicol 2022; 111:11-19. [PMID: 35562068 DOI: 10.1016/j.reprotox.2022.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 12/09/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a disease related to reproductive endocrine abnormalities in women of reproductive age, often accompanied by metabolic diseases such as hyperandrogenemia, insulin resistance and dyslipidemia. However, the etiology and mechanism of PCOS are still unclear. In recent years, more and more studies have found that epigenetic factors play an important role in PCOS. DNA methylation is the most widely studied epigenetic modification. At present, changes of DNA methylation have been found in serum, ovarian, hypothalamus, skeletal muscle, adipose tissue of PCOS patients, and these changes are closely related to insulin resistance, lipid metabolism and follicular development of PCOS. Although the current research on DNA methylation in PCOS is not in-depth, it indicated up a good direction for future research on the etiology and mechanism of PCOS. This review discussed the relationship between DNA methylation and PCOS. It is expected to help accelerate the application of DNA methylation in the diagnosis and treatment of PCOS.
Collapse
Affiliation(s)
- Yan-Nan Liu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Yi Qin
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China
| | - Bin Wu
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hui Peng
- Nursing School, Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Ming Li
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China
| | - Hai Luo
- School of Medicine, Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine,Hunan University of Medicine, Huaihua 418000, Hunan, China.
| | - Lin-Lin Liu
- Faculty of Nursing, Guangxi University of Chinese Medicine, Nanning,530200, Guangxi, China.
| |
Collapse
|
7
|
A Review on CYP11A1, CYP17A1, and CYP19A1 Polymorphism Studies: Candidate Susceptibility Genes for Polycystic Ovary Syndrome (PCOS) and Infertility. Genes (Basel) 2022; 13:genes13020302. [PMID: 35205347 PMCID: PMC8871850 DOI: 10.3390/genes13020302] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/17/2022] Open
Abstract
Polycystic ovary syndrome is a multifactorial condition associated with reproductive and endocrine organs and might cause infertility and metabolic abnormalities in childbearing age. PCOS seems to be a multifactorial disorder resulting from the combination of several genetic and environmental factors. Little research has been conducted to date on the impact of polymorphisms in infertility. We aim to review the appearance of polymorphisms in females of diverse ethnicities and their effect on infertility in the population with polycystic ovary syndrome. There have been numerous reports of the importance of the steroidogenesis pathway and genetic variants in PCOS pathogenesis. The most important genes that play a role in the aetiology of PCOS are CYP11A1, CYP17A1, and CYP19A1. We evaluated the occurrence of polymorphisms in various ethnicities in the CYP11A1, CYP17A1, and CYP19A1 genes and their efficacy on increasing PCOS risk with infertility. Our findings revealed that polymorphisms in various ethnicities are associated with the risk of PCOS with infertility. Although conflicting results regarding CYP11A1, CYP17A1, and CYP19A1 polymorphisms and their influence on PCOS with infertility have been reported in a small number of papers, the authors feel this may be attributable to the sample size and ethnic composition of the examined populations. In conclusion, our study strongly suggests that the CYP11A1, CYP17A1, and CYP19A1 genes might significantly enhance the probability of developing PCOS with infertility.
Collapse
|
8
|
Islam H, Masud J, Islam YN, Haque FKM. An update on polycystic ovary syndrome: A review of the current state of knowledge in diagnosis, genetic etiology, and emerging treatment options. WOMEN'S HEALTH 2022; 18:17455057221117966. [PMID: 35972046 PMCID: PMC9386861 DOI: 10.1177/17455057221117966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Polycystic ovary syndrome is the most common endocrine disorder in women of reproductive age, which is still incurable. However, the symptoms can be successfully managed with proper medication and lifestyle interventions. Despite its prevalence, little is known about its etiology. In this review article, the up-to-date diagnostic features and parameters recommended on the grounds of evidence-based data and different guidelines are explored. The ambiguity and insufficiency of data when diagnosing adolescent women have been put under special focus. We look at some of the most recent research done to establish relationships between different gene polymorphisms with polycystic ovary syndrome in various populations along with the underestimated impact of environmental factors like endocrine-disrupting chemicals on the reproductive health of these women. Furthermore, the article concludes with existing treatments options and the scopes for advancement in the near future. Various therapies have been considered as potential treatment through multiple randomized controlled studies, and clinical trials conducted over the years are described in this article. Standard therapies ranging from metformin to newly found alternatives based on vitamin D and gut microbiota could shine some light and guidance toward a permanent cure for this female reproductive health issue in the future.
Collapse
Affiliation(s)
- Hiya Islam
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Jaasia Masud
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Yushe Nazrul Islam
- Biotechnology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| | - Fahim Kabir Monjurul Haque
- Microbiology Program, Department of Mathematics and Natural Sciences, School of Data and Sciences, Brac University, Dhaka, Bangladesh
| |
Collapse
|