1
|
Genetic Variants of Complement Factor H Y402H (rs1061170), C2 R102G (rs2230199), and C3 E318D (rs9332739) and Response to Intravitreal Anti-VEGF Treatment in Patients with Exudative Age-Related Macular Degeneration. Medicina (B Aires) 2022; 58:medicina58050658. [PMID: 35630075 PMCID: PMC9145696 DOI: 10.3390/medicina58050658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/25/2022] Open
Abstract
Background and Objectives: To assess the association between the single nucleotide polymorphisms (SNPs) in the genes encoding complement factors CFH, C2, and C3 (Y402H rs1061170, R102G rs2230199, and E318D rs9332739, respectively) and response to intravitreal anti-vascular endothelial growth factor (VEGF) therapy in patients with exudative age-related macular degeneration (AMD). Materials and Methods: The study included 111 patients with exudative AMD treated with intravitreal bevacizumab or ranibizumab injections. Response to therapy was assessed on the basis of best-corrected visual acuity (BCVA) and central retinal thickness (CRT) measured every 4 weeks for 12 months. The control group included 58 individuals without AMD. The SNPs were genotyped by a real-time polymerase chain reaction in genomic DNA isolated from peripheral blood samples. Results: The CC genotype in SNP rs1061170 of the CFH gene was more frequent in patients with AMD than in controls (p = 0.0058). It was also more common among the 28 patients (25.2%) with poor response to therapy compared with good responders (p = 0.0002). Poor responders, especially those without this genotype, benefited from switching to another anti-VEGF drug. At the last follow-up assessment, carriers of this genotype had significantly worse BCVA (p = 0.0350) and greater CRT (p = 0.0168) than noncarriers. TT genotype carriers showed improved BCVA (p = 0.0467) and reduced CRT compared with CC and CT genotype carriers (p = 0.0194). No associations with AMD or anti-VEGF therapy outcomes for SNP rs9332739 in the C2 gene and SNP rs2230199 in the C3 gene were found. Conclusions: The CC genotype for SNP rs1061170 in the CFH gene was associated with AMD in our population. Additionally, it promoted a poor response to anti-VEGF therapy. On the other hand, TT genotype carriers showed better functional and anatomical response to anti-VEGF therapy at 12 months than carriers of the other genotypes for this SNP.
Collapse
|
2
|
Lu F, Liu S, Hao Q, Liu L, Zhang J, Chen X, Hu W, Huang P. Association Between Complement Factor C2/C3/CFB/CFH Polymorphisms and Age-Related Macular Degeneration: A Meta-Analysis. Genet Test Mol Biomarkers 2018; 22:526-540. [PMID: 30179527 DOI: 10.1089/gtmb.2018.0110] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Several previous studies have assessed the contribution of polymorphisms in genes encoding the complement factors C2/C3/CFB/CFH with the risk of age-related macular degeneration (AMD), however the results have been inconsistent. We conducted a meta-analysis to systematically review the potential association between complement factor polymorphisms and AMD. METHODS Studies that investigated associations between C2 (rs547154 and rs9332739), C3 (rs1047286), CFB (rs4151667 and rs641153), and CFH (rs551397 and rs2274700) polymorphisms and AMD were identified by searching PubMed, EMBASE, Web of Science, and Cochrane Library databases for articles published prior to January 1, 2018. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated to evaluate the association between these polymorphisms and AMD using Stata 12.0 software. Q and I2 statistics were used to evaluate between-study heterogeneity. Publication bias analyses were conducted using Begg's test. We also conducted an ethnic subgroup analysis. RESULTS A total of 53 studies that included data for 53,774 patients and 56,973 healthy controls were evaluated. The pooled ORs for rs551397, rs2274700, rs4151667, rs641153, rs1047286, rs9332739, and rs547154 in the heterozygote model were 0.53 (95% CI: 0.45-0.61), 0.53 (95% CI: 0.40-0.70), 0.54 (95% CI: 0.46-0.63), 0.48 (95% CI: 0.4-0.57), 1.42 (95% CI: 1.22-1.66), 0.5 (95% CI: 0.45-0.56), and 0.52 (95% CI: 0.43-0.62), respectively. CONCLUSION Our findings from this analysis confirmed the protective role of C2/CFB/CFH polymorphisms in the development of AMD, but showed that the single nucleotide polymorphism in C3 was a high-risk factor for AMD. The racial analysis results suggested that the effect of variant alleles was stronger in Caucasians than Asians.
Collapse
Affiliation(s)
- Feiteng Lu
- 1 Department of Biochemistry, College of Medicine, Nanchang University , Nanchang, P.R. China
| | - Shuang Liu
- 1 Department of Biochemistry, College of Medicine, Nanchang University , Nanchang, P.R. China
| | - Qingyun Hao
- 1 Department of Biochemistry, College of Medicine, Nanchang University , Nanchang, P.R. China
| | - Lixia Liu
- 2 Department of Internal Medicine, Youhao District People's Hospital , Yichun, P.R. China
| | - Jing Zhang
- 3 Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University , Nanchang, P.R. China
| | - Xiaolong Chen
- 4 Department of Epidemiology, School of Public Health, Nanchang University , Nanchang, P.R. China
| | - Wang Hu
- 4 Department of Epidemiology, School of Public Health, Nanchang University , Nanchang, P.R. China
| | - Peng Huang
- 4 Department of Epidemiology, School of Public Health, Nanchang University , Nanchang, P.R. China .,5 Jiangxi Province Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University , Nanchang, P.R. China
| |
Collapse
|
4
|
Sarli A, Skalidakis I, Velissari A, Koutsandrea C, Stefaniotou M, Petersen MB, Kroupis C, Kitsos G, Moschos MM. Investigation of associations of ARMS2, CD14, and TLR4 gene polymorphisms with wet age-related macular degeneration in a Greek population. Clin Ophthalmol 2017; 11:1347-1358. [PMID: 28794612 PMCID: PMC5538696 DOI: 10.2147/opth.s134538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is a multifactorial degenerative ocular disease that leads to loss of central vision. Functional gene polymorphisms have already been associated with the disease (for example, ARMS2 A69S, rs10490924). Aim The goal of our study was to verify the correlation of the aforementioned ARMS2 variation with the disease, to examine, for the first time, the role of the CD14 C260T variation (rs2569190), and to investigate the association of two TLR4 polymorphisms (Asp299Gly or rs4986790 and Thr399Ile or rs4986791) in a Greek population with the wet form of AMD. Patients and methods Genomic DNAs were isolated from blood samples of 103 healthy controls and 120 Greek patients with wet AMD who were age- and sex-matched, and all of whom were clinically evaluated. For the genotyping of all selected polymorphisms, polymerase chain reaction–restriction fragment length polymorphism analysis was performed. Results and conclusions This study confirmed the association between the ARMS2 variation and AMD, detecting the T risk allele in a significantly higher frequency in the patient group, compared with the control subjects (45% vs 29.13%, P<0.001, odds ratio [OR] 1.99, confidence interval 1.34–2.95). For the CD14 polymorphism, no statistically significant correlation was observed. As for the TLR4 polymorphisms, the percentage of heterozygotes increased from 2.9% to 11.7% in the patient population for Asp299Gly and from 1.9% to 10% for the Thr399Ile polymorphism (ORs 4.40 [P=0.01] and 5.61 [P=0.0088], respectively). Although our ARMS2 and CD14 results provided definite conclusions, the role of innate immunity TLR4 gene awaits further investigation in larger AMD populations with more clinical data collected on past microbial infections.
Collapse
Affiliation(s)
- Antonia Sarli
- Department of Clinical Biochemistry, Attikon University General Hospital
| | - Iosif Skalidakis
- 1st Department of Ophthalmology, "G. Gennimatas" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens
| | - Aliki Velissari
- Department of Clinical Biochemistry, Attikon University General Hospital
| | - Chryssanthi Koutsandrea
- 1st Department of Ophthalmology, "G. Gennimatas" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens
| | - Maria Stefaniotou
- Department of Ophthalmology, Ioannina University General Hospital, University of Ioannina, Ioannina, Greece
| | - Michael B Petersen
- Department of Clinical Genetics, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University Hospital, Aalborg, Denmark
| | - Christos Kroupis
- Department of Clinical Biochemistry, Attikon University General Hospital
| | - George Kitsos
- Department of Ophthalmology, Ioannina University General Hospital, University of Ioannina, Ioannina, Greece
| | - Marilita M Moschos
- 1st Department of Ophthalmology, "G. Gennimatas" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens
| |
Collapse
|
5
|
Ye Z, Shuai P, Zhai Y, Li F, Jiang L, Lu F, Wen F, Huang L, Zhang D, Liu X, Lin Y, Luo H, Zhang H, Zhu X, Wu Z, Yang Z, Gong B, Shi Y. Associations of 6p21.3 Region with Age-related Macular Degeneration and Polypoidal Choroidal Vasculopathy. Sci Rep 2016; 6:20914. [PMID: 26861912 PMCID: PMC4748259 DOI: 10.1038/srep20914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/14/2016] [Indexed: 12/31/2022] Open
Abstract
Neovascular age-related macular degeneration (AMD) and polypoidal choroidal vasculopathy (PCV) are leading causes of blindness in aging populations. This study was conducted to investigate the associations of chromosome 6p21.3 region, including CFB-SKIV2L-TNXB-FKBPL-NOTCH4 genes, with both neovascular AMD and PCV. Six single nucleotide polymorphisms (SNPs) in this region and two known AMD-associated SNPs in CFH (rs800292) and HTRA1 (rs11200638) were genotyped in a Han Chinese cohort composed of 490 neovascular AMD patients, 419 PCV patients and 1316 controls. Among the SNPs, TNXB rs12153855 and FKBPL rs9391734 conferred an increased susceptibility to neovascular AMD (P = 2.8 × 10−4 and 0.001, OR = 1.80 and 1.76, respectively), while SKIV2L exerted a protective effect on neovascular AMD (P = 2.2 × 10−4, OR = 0.49). Rs12153855C and rs9391734A alleles could further increase the susceptibility to AMD in subjects with rs800292, rs11200638 and rs429608 risk alleles. However, only the association of SKIV2L rs429608 remained significant after adjusting for rs800292, rs11200638 and the other 5 SNPs. The protective haplotype AATGAG exhibited significant association with neovascular AMD (permutation P = 0.015, OR = 0.34). None of the SNPs in this region was associated with PCV. Association profiles of 6p21.3 region showed discrepancy between neovascular AMD and PCV, indicating possible molecular and pathological differences between these two retinal disorders.
Collapse
Affiliation(s)
- Zimeng Ye
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ping Shuai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Health Management Center, Sichuan Provincial People's Hospital, Chengdu, China
| | - Yaru Zhai
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of ophthalmology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Fang Lu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Feng Wen
- Zhongshan Ophthalmic Center, Guangzhou, China
| | - Lulin Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dingding Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Health Management Center, Sichuan Provincial People's Hospital, Chengdu, China
| | - Xiaoqi Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ying Lin
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Huaichao Luo
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Clinical Medicine Department, Luzhou Medical College, Luzhou, China
| | - Houbin Zhang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Zhengzheng Wu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Department of ophthalmology, Sichuan Provincial People's Hospital, Chengdu, China
| | - Zhenglin Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Bo Gong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, School of Medicine, Sichuan Academy of Medical Sciences &Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.,Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
6
|
Qian-Qian Y, Yong Y, Jing Z, Xin B, Tian-Hua X, Chao S, Jia C. Nonsynonymous single nucleotide polymorphisms in the complement component 3 gene are associated with risk of age-related macular degeneration: a meta-analysis. Gene 2015; 561:249-55. [PMID: 25688879 DOI: 10.1016/j.gene.2015.02.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Nonsynonymous single nucleotide polymorphisms (SNPs) in complement component 3 (CC3) are associated with the risk of age-related macular degeneration (AMD), however, this association is not consistent among studies. To thoroughly address this issue, we performed an updated meta-analysis to evaluate the association between nine SNPs in the CC3 gene and AMD risk. A search was conducted of the PubMed database through 3rd Aug, 2014. Odds ratios (ORs) and 95% confidence intervals (CIs) were used to assess the strength of associations. Based on the search criteria for manuscripts reporting AMD susceptibility related to CC3 in nine SNPs, 57 case-control studies from 22 different articles were retrieved. Significantly positive associations were found for the rs2230199 C/G SNP and AMD in the Caucasian population, as well as for the rs1047286 C/T SNP. Moreover, a relationship between the rs11569536 G/A SNP and AMD was detected. By contrast, a negative association was observed between rs2250656 A/G SNP and AMD risk. The present meta-analysis suggests that these four SNPs in the CC3 gene are potentially associated with the risk of AMD development. Further studies using larger sample sizes and accounting for gene-environment interactions should be conducted to elucidate the role of CC3 gene polymorphisms in AMD risk.
Collapse
Affiliation(s)
- Yu Qian-Qian
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Yao Yong
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| | - Zhu Jing
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Bao Xin
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xie Tian-Hua
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Sun Chao
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| | - Cao Jia
- Department of Ophthalmology, Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|