1
|
Lynn J, Raney A, Britton N, Ramoin J, Yang RW, Radojevic B, McClard CK, Kingsley R, Coussa RG, Bennett LD. Genetic Diagnosis for 64 Patients with Inherited Retinal Disease. Genes (Basel) 2022; 14:74. [PMID: 36672815 PMCID: PMC9859429 DOI: 10.3390/genes14010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The overlapping genetic and clinical spectrum in inherited retinal degeneration (IRD) creates challenges for accurate diagnoses. The goal of this work was to determine the genetic diagnosis and clinical features for patients diagnosed with an IRD. After signing informed consent, peripheral blood or saliva was collected from 64 patients diagnosed with an IRD. Genetic testing was performed on each patient in a Clinical Laboratory Improvement Amendments of 1988 (CLIA) certified laboratory. Mutations were verified with Sanger sequencing and segregation analysis when possible. Visual acuity was measured with a traditional Snellen chart and converted to a logarithm of minimal angle of resolution (logMAR). Fundus images of dilated eyes were acquired with the Optos® camera (Dunfermline, UK). Horizontal line scans were obtained with spectral-domain optical coherence tomography (SDOCT; Spectralis, Heidelberg, Germany). Genetic testing combined with segregation analysis resolved molecular and clinical diagnoses for 75% of patients. Ten novel mutations were found and unique genotype phenotype associations were made for the genes RP2 and CEP83. Collective knowledge is thereby expanded of the genetic basis and phenotypic correlation in IRD.
Collapse
Affiliation(s)
- Jacob Lynn
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Austin Raney
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Nathaniel Britton
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Josh Ramoin
- College of Osteopathic Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ryan W. Yang
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bojana Radojevic
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Cynthia K. McClard
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Ronald Kingsley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Razek Georges Coussa
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| | - Lea D. Bennett
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Dean McGee Eye Institute, Oklahoma City, OK 73104, USA
| |
Collapse
|
2
|
Liu HL, Gao FG, Wang DD, Hu FY, Xu P, Chang Q, Xu GZ, Wu JH. Mutation Analysis of the RPGR Gene in a Chinese Cohort. Front Genet 2022; 13:850122. [PMID: 35432464 PMCID: PMC9008860 DOI: 10.3389/fgene.2022.850122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/17/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose: The purpose of this study was to investigate the clinical and genetic characteristics of the retinitis pigmentosa GTPase regulatory factor gene (RPGR) in a Chinese cohort. Methods: A retrospective analysis was performed on 80 subjects with RPGR-retinal dystrophy (RPGR-RD) for detailed genetic and clinical characterization. The panel-based next-generation sequencing of 792 causative genes involved in common genetic eye diseases was conducted in all individuals, followed by clinical variant interpretation. Information, including age, sex, geographic distribution, family history, consanguineous marriage, age at symptom onset, disease duration, best corrected visual acuity (BCVA), and complete ophthalmologic examination results, was collected. Results: This cohort (41 men and 39 women) included 26 families (26 probands and their available family members) and 13 sporadic cases. The average age of these participants was 36.35 ± 17.68 years, and the majority of the families were from eastern China (28 families, 71.79%). The average duration of disease in the probands was 22.68 ± 15.80 years. In addition, the average BCVA values of the right and left eyes in the probands were 0.96 ± 0.77 and 1.00 ± 0.77, respectively. A total of 34 RPGR variants were identified, including 6 reported variants and 28 novel variants. Among these variants, NM_001034853.1: c.2899_2902delGAAG and c.2744_2745ins24 were considered de novo variants. The majority of the RPGR variants were classified as likely pathogenic, accounting for 70.59% of the variants (24 variants). The most common nucleotide and amino acid changes identified in this study were deletions (16 variants, 45.06%) and frameshifts (17 variants, 50.00%), respectively. Genetic analysis revealed that these RPGR variants were distributed in 10 different subregions of RPGR, and 70.59% of the RPGR variants (24 variants) were located in exon 15. Four RPGR variants, NM_001034853.1: c.2405_2406delAG, c.1345C > T, c.2218G > T and c.2236_2237delGA, occurred at a very high frequency of 28.21% (11 families) among 39 unrelated families. Conclusion: This study expands the known mutational spectrum of RPGR, and we provide a new reference for the genetic diagnosis of RPGR variants.
Collapse
Affiliation(s)
- Hong-Li Liu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Feng-Guan Gao
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Dan-Dan Wang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Fang-Yuan Hu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Ping Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Qing Chang
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Ge-Zhi Xu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
| | - Ji-Hong Wu
- Eye Institute, Eye and ENT Hospital, College of Medicine, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Science and Technology Commission of Shanghai Municipality, Shanghai, China
- Key Laboratory of Myopia (Fudan University), Chinese Academy of Medical Sciences, National Health Commission, Shanghai, China
- *Correspondence: Ji-Hong Wu,
| |
Collapse
|