1
|
Zhang H, Dalisson B, Tran S, Barralet J. Preservation of Blood Vessels with an Oxygen Generating Composite. Adv Healthc Mater 2018; 7:e1701338. [PMID: 30277005 DOI: 10.1002/adhm.201701338] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 08/07/2018] [Indexed: 02/06/2023]
Abstract
Damage caused by oxygen deficiency (hypoxia) is one of the major factors limiting tissue and organ preservation time. Cooling tissues slows down metabolic rate of cells thereby prolonging tissue and organ survival sufficiently to allow transport and transplantation within a few hours. Although metabolism is slowed, cells and some enzymes continue to consume oxygen that can render cold stored tissues hypoxic. Here, an oxygen-generating composite (OGC) with sustained oxygen release is reported for ex vivo blood vessel preservation. Aorta segments are cultured under hypothermia for 25 days in vascular preservation media. The presence of OGC increases cell viability from 9 ± 6% to 96 ± 3% and retains 65 ± 8% of original KCl stimulated contractile force after 25 days compared with 25 ± 4% in controls. Culture for 7 days in nitrogen demonstrates proof-of-concept for normothermic blood vessel preservation, OGC increases the cell viability from 45 ± 15% to 78 ± 2%, and KCl stimulates contractile force from 49 ± 7% to 95 ± 8%, respectively. Oxygen release materials then may have a role in augmenting current preservation techniques.
Collapse
Affiliation(s)
- Huaifa Zhang
- Faculty of Dentistry; McGill University; Montreal QC H3A 1G1 Canada
| | | | - Simon Tran
- Faculty of Dentistry; McGill University; Montreal QC H3A 1G1 Canada
| | - Jake Barralet
- Faculty of Dentistry; McGill University; Montreal QC H3A 1G1 Canada
- Division of Orthopaedics; Department of Surgery; Faculty of Medicine; McGill University; Montreal QC H3A 1G1 Canada
| |
Collapse
|
2
|
Zhang H, Barralet JE. Mimicking oxygen delivery and waste removal functions of blood. Adv Drug Deliv Rev 2017; 122:84-104. [PMID: 28214553 DOI: 10.1016/j.addr.2017.02.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 02/13/2017] [Accepted: 02/13/2017] [Indexed: 12/20/2022]
Abstract
In addition to immunological and wound healing cell and platelet delivery, ion stasis and nutrient supply, blood delivers oxygen to cells and tissues and removes metabolic wastes. For decades researchers have been trying to develop approaches that mimic these two immediately vital functions of blood. Oxygen is crucial for the long-term survival of tissues and cells in vertebrates. Hypoxia (oxygen deficiency) and even at times anoxia (absence of oxygen) can occur during organ preservation, organ and cell transplantation, wound healing, in tumors and engineering of tissues. Different approaches have been developed to deliver oxygen to tissues and cells, including hyperbaric oxygen therapy (HBOT), normobaric hyperoxia therapy (NBOT), using biochemical reactions and electrolysis, employing liquids with high oxygen solubility, administering hemoglobin, myoglobin and red blood cells (RBCs), introducing oxygen-generating agents, using oxygen-carrying microparticles, persufflation, and peritoneal oxygenation. Metabolic waste accumulation is another issue in biological systems when blood flow is insufficient. Metabolic wastes change the microenvironment of cells and tissues, influence the metabolic activities of cells, and ultimately cause cell death. This review examines advances in blood mimicking systems in the field of biomedical engineering in terms of oxygen delivery and metabolic waste removal.
Collapse
|
3
|
Influence of the Two-Layer Preservation Method on Human Pancreatic Islet Isolation: A Meta-Analysis. Int J Artif Organs 2015; 38:117-25. [PMID: 25790972 DOI: 10.5301/ijao.5000391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 11/20/2022]
Abstract
Introduction There has been continuous debate on whether the Two-Layer Method (TLM) is superior to the University of Wisconsin solution (UW) for preserving human pancreas prior to islet isolation. The objective of the current meta-analysis is to assess which method is superior. Methods We searched electronic databases (MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials) for relevant human trials published in the English language from January 2000 to October 2013. Data on donor characteristics and islet isolation outcomes were extracted. Results 14 articles containing 18 human studies were included in this meta-analysis. In comparison to UW alone, TLM alone produced a significantly higher islet yield (weighted mean difference, 776.32; 95% confidence interval; 370.82-1181.82; P = .0002). TLM alone also yielded higher proportion of transplantable preparations (odds ratio, 1.60; 95% confidence interval; 1.15-2.23; P = .005). The following measures did not differ: islet viability (weighted mean difference, 2.10; −2.41-6.60; P = .360), purity (weighted mean difference, −0.92; −3.75-1.91; P = .520) and function assessed by measuring the stimulation index (weighted mean difference, 0.17; −0.21-0.55; P = .380). When comparing TLM following UW storage with UW alone, the results were similar to the previous ones. Conclusions This data indicates that the TLM can improve islet yield and increase the opportunities of human pancreatic islet transplantation. Therefore, the TLM should be recommended for preserving human pancreas prior to islet isolation.
Collapse
|
4
|
Bellavia M, Altomare R, Cacciabaudo F, Santoro A, Allegra A, Concetta Gioviale M, Lo Monte AI. Towards an ideal source of mesenchymal stem cell isolation for possible therapeutic application in regenerative medicine. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:356-60. [DOI: 10.5507/bp.2013.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 06/27/2013] [Indexed: 12/16/2022] Open
|
5
|
Gioviale MC, Bellavia M, Damiano G, Lo Monte AI. Beyond islet transplantation in diabetes cell therapy: from embryonic stem cells to transdifferentiation of adult cells. Transplant Proc 2014; 45:2019-24. [PMID: 23769099 DOI: 10.1016/j.transproceed.2013.01.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/24/2013] [Indexed: 12/22/2022]
Abstract
Exogenous insulin is, at the moment, the therapy of choice of diabetes, but does not allow tight regulation of glucose leading to long-term complications. Recently, pancreatic islet transplantation to reconstitute insulin-producing β cells, has emerged as an alternative promising therapeutic approach. Unfortunately, the number of donor islets is too low compared with the high number of patients needing a transplantation leading to a search for renewable sources of high-quality β-cells. This review, summarizes more recent promising approaches to the generation of new β-cells from embryonic stem cells for transdifferentiation of adult cells, particularly a critical examination of the seminal work by Lumelsky et al.
Collapse
Affiliation(s)
- M C Gioviale
- Transplant Unit, AOUP P. Giaccone, School of Medicine, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
6
|
Gioviale MC, Damiano G, Puleio R, Bellavia M, Cassata G, Palumbo VD, Spinelli G, Altomare R, Barone R, Cacciabaudo F, Buscemi G, Lo Monte AI. Histologic effects of University of Wisconsin two-layer method preservation of rat pancreas. Transplant Proc 2013; 45:1723-8. [PMID: 23769032 DOI: 10.1016/j.transproceed.2013.02.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 11/25/2022]
Abstract
Marginal donors represent a poorly utilized source of organs for transplantation despite their availability. The key is to reduce the ischemic damage in the effort to improve organ quality. This study investigated the histologic effects after in situ perfusion of preservation with a two-layer method compared with the classic University of Wisconsin preservation in term of tissue integrity and number of viable exocrine cells in the rat pancreas both after exsanguination and at 8 weeks of cryopreservation. Pancreata harvested from 60 rats were collected using 3 methods: two-layer method following University of Wisconsin perfusion; exsanguination; and classic University of Wisconsin perfusion/storage. In addition to histologic analysis of collected pancreata, we analyzed the number of CK19(+) cells and their viability using chi-square tests with values P < .05 considered to be significant. Rat pancreas histology showed as University of Wisconsin in situ perfusion and preservation by the two-layer method to be more effective to maintain the morphologic integrity of both exocrine and endocrine tissues. There were a larger number of CK19(+) cells with good viability. Moreover, the effects of oxygenation were visible in pancreas biopsies preserved after exsanguination. In situ University of Wisconsin perfusion and preservation for 240 minutes with the two-layer method yielded greater numbers and viability of CK19(+) cells even after 8 weeks of cryopreservation.
Collapse
Affiliation(s)
- M C Gioviale
- Dipartimento di Discipline Chirurgiche ed Oncologiche, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Erro E, Bundy J, Massie I, Chalmers SA, Gautier A, Gerontas S, Hoare M, Sharratt P, Choudhury S, Lubowiecki M, Llewellyn I, Legallais C, Fuller B, Hodgson H, Selden C. Bioengineering the liver: scale-up and cool chain delivery of the liver cell biomass for clinical targeting in a bioartificial liver support system. Biores Open Access 2013; 2:1-11. [PMID: 23514704 PMCID: PMC3569957 DOI: 10.1089/biores.2012.0286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Acute liver failure has a high mortality unless patients receive a liver transplant; however, there are insufficient donor organs to meet the clinical need. The liver may rapidly recover from acute injury by hepatic cell regeneration given time. A bioartificial liver machine can provide temporary liver support to enable such regeneration to occur. We developed a bioartificial liver machine using human-derived liver cells encapsulated in alginate, cultured in a fluidized bed bioreactor to a level of function suitable for clinical use (performance competence). HepG2 cells were encapsulated in alginate using a JetCutter to produce ∼500 μm spherical beads containing cells at ∼1.75 million cells/mL beads. Within the beads, encapsulated cells proliferated to form compact cell spheroids (AELS) with good cell-to-cell contact and cell function, that were analyzed functionally and by gene expression at mRNA and protein levels. We established a methodology to enable a ∼34-fold increase in cell density within the AELS over 11-13 days, maintaining cell viability. Optimized nutrient and oxygen provision were numerically modeled and tested experimentally, achieving a cell density at harvest of >45 million cells/mL beads; >5×10(10) cells were produced in 1100 mL of beads. This process is scalable to human size ([0.7-1]×10(11)). A short-term storage protocol at ambient temperature was established, enabling transport from laboratory to bedside over 48 h, appropriate for clinical translation of a manufactured bioartificial liver machine.
Collapse
Affiliation(s)
- Eloy Erro
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - James Bundy
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - Isobel Massie
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - Sherri-Ann Chalmers
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - Aude Gautier
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - Spyridon Gerontas
- The Advanced Center for Biochemical Engineering, Department of Biochemical Engineering; University College London, London, United Kingdom
| | - Mike Hoare
- The Advanced Center for Biochemical Engineering, Department of Biochemical Engineering; University College London, London, United Kingdom
| | - Peter Sharratt
- PNAC Facility, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Choudhury
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - Marcin Lubowiecki
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - Ian Llewellyn
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - Cécile Legallais
- CNRS UMR 6600 Biomechanics and Bioengineering, University of Technology of Compiègne, Compiègne, France
| | - Barry Fuller
- Cell, Tissue & Organ Preservation Unit, University Department of Surgery, UCL Medical School, Royal Free Hospital Campus, London, United Kingdom
| | - Humphrey Hodgson
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| | - Clare Selden
- Liver Group, UCL Institute of Liver & Digestive Health, London, United Kingdom
| |
Collapse
|
8
|
Brandhorst H, Iken M, Scott WE, Papas KK, Theisinger B, Johnson PR, Korsgren O, Brandhorst D. Quality of isolated pig islets is improved using perfluorohexyloctane for pancreas storage in a split lobe model. Cell Transplant 2012; 22:1477-83. [PMID: 23044229 DOI: 10.3727/096368912x657639] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pancreas transportation between donor center and islet production facility is frequently associated with prolonged ischemia impairing islet isolation and transplantation outcomes. It is foreseeable that shipment of pig pancreases from distant centralized biosecure breeding facilities to institutes that have a long-term experience in porcine islet isolation is essentially required in future clinical islet xenotransplantation. Previously, we demonstrated that perfluorohexyloctan (F6H8) is significantly more efficient to protect rat and human pancreata from ischemically induced damage compared to perfluorodecalin (PFD). To evaluate the effect of F6H8 on long-term stored pig pancreases in a prospective study, we utilized the split lobe model to minimize donor variability. Retrieved pancreases were dissected into the connecting and splenic lobe, intraductally flushed with UW solution and immersed alternately in either preoxygenated F6H8 or PFD for 8-10 h. Prior to pancreas digestion, the intrapancreatic pO2 and the ratio of ATP-to-inorganic phosphate was compared utilizing 31P-NMR spectroscopy. Isolated islets were cultured for 2-3 days at 37°C and subjected to quality assessment. Pancreatic lobes stored in preoxygenated F6H8 had a significantly higher intrapancreatic pO2 compared to pancreata in oxygen-precharged PFD (10.11 ± 3.87 vs. 1.64 ± 1.13 mmHg, p < 0.05). This correlated with a higher ATP-to-inorganic phosphate ratio (0.30 ± 0.04 vs. 0.14 ± 0.01). No effect was observed concerning yield and purity of freshly isolated islets. Nevertheless, a significantly improved glucose-stimulated insulin response, increased viability and postculture survival (57.2 ± 5.7 vs. 39.3 ± 6.4%, p < 0.01) was measured in islets isolated from F6H8-preserved pancreata. The present data suggest that F6H8 does not increase islet yield but improves quality of pig islets isolated after prolonged cold ischemia.
Collapse
Affiliation(s)
- H Brandhorst
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|