1
|
Eijkel BIM, Apachitei I, Fratila-Apachitei LE, Zadpoor AA. In vitro co-culture models for the assessment of orthopedic antibacterial biomaterials. Front Bioeng Biotechnol 2024; 12:1332771. [PMID: 38375457 PMCID: PMC10875071 DOI: 10.3389/fbioe.2024.1332771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024] Open
Abstract
The antibacterial biofunctionality of bone implants is essential for the prevention and treatment of implant-associated infections (IAI). In vitro co-culture models are utilized to assess this and study bacteria-host cell interactions at the implant interface, aiding our understanding of biomaterial and the immune response against IAI without impeding the peri-implant bone tissue regeneration. This paper reviews existing co-culture models together with their characteristics, results, and clinical relevance. A total of 36 studies were found involving in vitro co-culture models between bacteria and osteogenic or immune cells at the interface with orthopedic antibacterial biomaterials. Most studies (∼67%) involved co-culture models of osteogenic cells and bacteria (osteo-bac), while 33% were co-culture models of immune cells and bacterial cells (im-bac). All models involve direct co-culture of two different cell types. The cell seeding sequence (simultaneous, bacteria-first, and cell-first) was used to mimic clinically relevant conditions and showed the greatest effect on the outcome for both types of co-culture models. The im-bac models are considered more relevant for early peri-implant infections, whereas the osteo-bac models suit late infections. The limitations of the current models and future directions to develop more relevant co-culture models to address specific research questions are also discussed.
Collapse
Affiliation(s)
- Benedictus I. M. Eijkel
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Delft, Netherlands
| | | | - Lidy E. Fratila-Apachitei
- Department of Biomechanical Engineering, Faculty of Mechanical Engineering, Delft University of Technology (TU Delft), Delft, Netherlands
| | | |
Collapse
|
2
|
Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol 2021; 48:624-640. [PMID: 34879216 DOI: 10.1080/1040841x.2021.2011132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.
Collapse
Affiliation(s)
- Colin W K Rosman
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
3
|
Gálvez-Sirvent E, Ibarzábal-Gil A, Rodríguez-Merchán EC. Treatment options for aseptic tibial diaphyseal nonunion: A review of selected studies. EFORT Open Rev 2020; 5:835-844. [PMID: 33312710 PMCID: PMC7722944 DOI: 10.1302/2058-5241.5.190077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In aseptic tibial diaphyseal nonunions after failed conservative treatment, the recommended treatment is a reamed intramedullary (IM) nail.Typically, when an aseptic tibial nonunion previously treated with an IM nail is found, it is advisable to change the previous IM nail for a larger diameter reamed and locked IM nail (the rate of success of renailing is around 90%).A second change after an IM nail failure is also a good option, especially if bone healing has progressed after the first change.Fibular osteotomy is not routinely advised; it is only recommended when it interferes with the nonunion site.In delayed unions before 24 weeks, IM nail dynamization can be performed as a less invasive option before deciding on a nail change.If there is a bone defect, a bone graft must be recommended, with the gold standard being the autologous iliac crest bone graft (AICBG).A reamer-irrigator-aspirator (RIA) system might also obtain a bone autograft that is comparable to AICBG.Although the size of the bone defect suitable to perform bone transport techniques is a controversial issue, we believe that such techniques can be considered in bone defects > 3 cm.Non-invasive therapies and biologic therapies could be applied in isolation for patients with high surgical risk, or could be used as adjuvants to the aforementioned surgical treatments. Cite this article: EFORT Open Rev 2020;5:835-844. DOI: 10.1302/2058-5241.5.190077.
Collapse
Affiliation(s)
- Elena Gálvez-Sirvent
- Department of Orthopaedic Surgery, 'Infanta Elena' University Hospital, Valdemoro, Madrid, Spain
| | - Aitor Ibarzábal-Gil
- Department of Orthopaedic Surgery, 'La Paz' University Hospital-IdiPaz, Madrid, Spain
| | | |
Collapse
|
4
|
Schmal H, Brix M, Bue M, Ekman A, Ferreira N, Gottlieb H, Kold S, Taylor A, Toft Tengberg P, Ban I. Nonunion - consensus from the 4th annual meeting of the Danish Orthopaedic Trauma Society. EFORT Open Rev 2020; 5:46-57. [PMID: 32071773 PMCID: PMC7017598 DOI: 10.1302/2058-5241.5.190037] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nonunions are a relevant economic burden affecting about 1.9% of all fractures. Rather than specifying a certain time frame, a nonunion is better defined as a fracture that will not heal without further intervention. Successful fracture healing depends on local biology, biomechanics and a variety of systemic factors. All components can principally be decisive and determine the classification of atrophic, oligotrophic or hypertrophic nonunions. Treatment prioritizes mechanics before biology. The degree of motion between fracture parts is the key for healing and is described by strain theory. If the change of length at a given load is > 10%, fibrous tissue and not bone is formed. Therefore, simple fractures require absolute and complex fractures relative stability. The main characteristics of a nonunion are pain while weight bearing, and persistent fracture lines on X-ray. Treatment concepts such as ‘mechanobiology’ or the ‘diamond concept’ determine the applied osteosynthesis considering soft tissue, local biology and stability. Fine wire circular external fixation is considered the only form of true biologic fixation due to its ability to eliminate parasitic motions while maintaining load-dependent axial stiffness. Nailing provides intramedullary stability and biology via reaming. Plates are successful when complex fractures turn into simple nonunions demanding absolute stability. Despite available alternatives, autograft is the gold standard for providing osteoinductive and osteoconductive stimuli. The infected nonunion remains a challenge. Bacteria, especially staphylococcus species, have developed mechanisms to survive such as biofilm formation, inactive forms and internalization. Therefore, radical debridement and specific antibiotics are necessary prior to reconstruction.
Cite this article: EFORT Open Rev 2020;5:46-57. DOI: 10.1302/2058-5241.5.190037
Collapse
Affiliation(s)
- Hagen Schmal
- Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Orthopaedics and Traumatology, Freiburg University Hospital, Freiburg, Germany
| | - Michael Brix
- Department of Orthopaedics and Traumatology, Odense University Hospital, Odense, Denmark
| | - Mats Bue
- Department of Orthopaedic Surgery, Horsens Regional Hospital, Horsens, Denmark
| | - Anna Ekman
- Orthopaedic Department, Södersjukhuset, Stockholm, Sweden
| | - Nando Ferreira
- Division of Orthopaedics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Hospital, Cape Town, South Africa
| | - Hans Gottlieb
- Department of Orthopaedic Surgery, Herlev Hospital, Herlev, Denmark
| | - Søren Kold
- Department of Orthopaedic Surgery, Aalborg University Hospital, Aalborg University, Aalborg, Denmark
| | - Andrew Taylor
- Department of Orthopaedic Surgery, Nottingham University Hospitals, UK
| | - Peter Toft Tengberg
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | - Ilija Ban
- Department of Orthopaedic Surgery, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| | | |
Collapse
|
5
|
Liu W, Li J, Cheng M, Wang Q, Qian Y, Yeung KW, Chu PK, Zhang X. A surface-engineered polyetheretherketone biomaterial implant with direct and immunoregulatory antibacterial activity against methicillin-resistant Staphylococcus aureus. Biomaterials 2019; 208:8-20. [DOI: 10.1016/j.biomaterials.2019.04.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/01/2019] [Accepted: 04/06/2019] [Indexed: 10/27/2022]
|
6
|
Abstract
Implants are being continuously developed to achieve personalized therapy. With the advent of 3-dimensional (3D) printing, it is becoming possible to produce customized precisely fitting implants that can be derived from 3D images fed into 3D printers. In addition, it is possible to combine various materials, such as ceramics, to render these constructs osteoconductive or growth factors to make them osteoinductive. Constructs can be seeded with cells to engineer bone tissue. Alternatively, it is possible to load cells into the biomaterial to form so called bioink and print them together to from 3D bioprinted constructs that are characterized by having more homogenous cell distribution in their matrix. To date, 3D printing was applied in the clinic mostly for surgical training and for planning of surgery, with limited use in producing 3D implants for clinical application. Few examples exist so far, which include mostly the 3D printed implants applied in maxillofacial surgery and in orthopedic surgery, which are discussed in this report. Wider clinical application of 3D printing will help the adoption of 3D printers as essential tools in the clinics in future and thus, contribute to realization of personalized medicine.
Collapse
|
7
|
Heim CE, Vidlak D, Odvody J, Hartman CW, Garvin KL, Kielian T. Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): Implications for infection persistence. J Orthop Res 2018; 36:1605-1613. [PMID: 29139571 PMCID: PMC5953848 DOI: 10.1002/jor.23806] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/11/2017] [Indexed: 02/04/2023]
Abstract
UNLABELLED Prosthetic joint infection (PJI) is a devastating complication of joint arthroplasty surgery typified by biofilm formation. Currently, mechanisms whereby biofilms persist and evade immune-mediated clearance in immune competent patients remain largely ill-defined. Therefore, the current study characterized leukocyte infiltrates and inflammatory mediator expression in tissues from patients with PJI compared to aseptic loosening. CD33+ HLA-DR- CD66b+ CD14-/low granulocytic myeloid-derived suppressor cells (G-MDSCs) were the predominant leukocyte population at sites of human PJI compared to aseptic tissues. MDSCs inhibit T cell proliferation, which coincided with reduced T cells in PJIs compared to aseptic tissues. IL-10, IL-6, and CXCL1 were significantly elevated in PJI tissues and have been implicated in MDSC inhibitory activity, expansion, and recruitment, respectively, which may account for their preferential increase in PJIs. This bias towards G-MDSC accumulation during human PJI could account for the chronicity of these infections by preventing the pro-inflammatory, antimicrobial actions of immune effector cells. CLINICAL SIGNIFICANCE Animal models of PJI have revealed a critical role for MDSCs and IL-10 in promoting infection persistence; however, whether this population is prevalent during human PJI and across distinct bacterial pathogens remains unknown. This study has identified that granulocytic-MDSC infiltrates are unique to human PJIs caused by distinct bacteria, which are not associated with aseptic loosening of prosthetic joints. Better defining the immune status of human PJIs could lead to novel immune-mediated approaches to facilitate PJI clearance in combination with conventional antibiotics. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1605-1613, 2018.
Collapse
Affiliation(s)
- Cortney E. Heim
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Debbie Vidlak
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Jessica Odvody
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198
| | - Curtis W. Hartman
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Kevin L. Garvin
- Department of Orthopaedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198,Corresponding Author: Tammy Kielian, Ph.D., University of Nebraska Medical Center, Department of Pathology and Microbiology, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, Phone: (402) 559-8002, FAX: (402) 559-5900,
| |
Collapse
|
8
|
Selan L, Papa R, Ermocida A, Cellini A, Ettorre E, Vrenna G, Campoccia D, Montanaro L, Arciola CR, Artini M. Serratiopeptidase reduces the invasion of osteoblasts by Staphylococcus aureus. Int J Immunopathol Pharmacol 2017; 30:423-428. [PMID: 29212390 PMCID: PMC5806802 DOI: 10.1177/0394632017745762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Finding new strategies to counteract periprosthetic infection and implant failure is a main target in orthopedics. Staphylococcus aureus, the leading etiologic agent of orthopedic implant infections, is able to enter and kill osteoblasts, to stimulate pro-inflammatory chemokine secretion, to recruit osteoclasts, and to cause inflammatory osteolysis. Moreover, by entering eukaryotic cells, staphylococci hide from the host immune defenses and shelter from the extracellular antibiotics. Thus, infection persists, inflammation thrives, and a highly destructive osteomyelitis occurs around the implant. The ability of serratiopeptidase (SPEP), a metalloprotease by Serratia marcescens, to control S. aureus invasion of osteoblastic MG-63 cells and pro-inflammatory chemokine MCP-1 secretion was evaluated. Human osteoblast cells were infected with staphylococcal strains in the presence and in the absence of SPEP. Cell proliferation and cell viability were also evaluated. The release of pro-inflammatory chemokine MCP-1 was evaluated after the exposure of the osteoblast cells to staphylococcal strains. The significance of the differences in the results of each test and the relative control values was determined with Student's t-test. SPEP impairs their invasiveness into osteoblasts, without affecting the viability and proliferation of bone cells, and tones down their production of MCP-1. We recognize SPEP as a potential tool against S. aureus bone infection and destruction.
Collapse
Affiliation(s)
- Laura Selan
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rosanna Papa
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Angela Ermocida
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Andrea Cellini
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Evaristo Ettorre
- 2 Division of Gerontology, Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic, and Geriatric Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianluca Vrenna
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Davide Campoccia
- 3 Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Lucio Montanaro
- 3 Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,4 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Carla Renata Arciola
- 3 Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,4 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Marco Artini
- 1 Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Alterations in biomechanical properties of the cornea among patients with polycystic kidney disease. Int Ophthalmol 2017; 38:1559-1564. [PMID: 28664236 DOI: 10.1007/s10792-017-0619-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 06/20/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE The aim of this study was to evaluate the corneal biomechanical features in polycystic kidney disease (PKD) patients and compare them with the healthy individuals. METHODS Totally 81 patients with a mean age of 48.46 ± 14.51 years and 60 control cases with a mean age of 44.68 ± 12.69 years were included in the study. All of the subjects underwent a complete ophthalmological examination, including visual acuity testing, biomicroscopic anterior and posterior segment examinations. Corneal hysteresis (CH), corneal resistance factor (CRF), Goldmann-correlated intraocular pressure (IOPg) and corneal-compensated intraocular pressure (IOPcc) were evaluated with the ocular response analyzer, and the central corneal thickness was evaluated with Sirius® corneal topography. RESULTS PKD patients had significantly increased CH values, without any alterations in IOP or CCT values, compared with the control cases (p:0.001). Among PKD patients, 23 were having liver cysts accompanying renal cysts. There was not any statistically significant difference between PKD patients with or without liver cysts regarding biomechanical properties of the cornea. However, both patient groups had statistically significantly increased CH values compared with the control cases. CONCLUSION Patients with PKD present with higher CH values than age-matched controls. Larger studies are warranted to elucidate the alterations in corneal biomechanical properties and their clinical relevance in PKD patients.
Collapse
|
10
|
Sardi JDCO, Polaquini CR, Freires IA, Galvão LCDC, Lazarini JG, Torrezan GS, Regasini LO, Rosalen PL. Antibacterial activity of diacetylcurcumin against Staphylococcus aureus results in decreased biofilm and cellular adhesion. J Med Microbiol 2017; 66:816-824. [DOI: 10.1099/jmm.0.000494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Janaina de Cássia Orlandi Sardi
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| | - Carlos Roberto Polaquini
- Department of Chemistry and Environmental Sciences, São Paulo State University Júlio de Mesquita Filho, São Jose do Rio Preto, São Paulo, Brazil
| | - Irlan Almeida Freires
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| | - Livia Câmara de Carvalho Galvão
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| | - Josy Goldoni Lazarini
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| | - Guilherme Silva Torrezan
- Department of Chemistry and Environmental Sciences, São Paulo State University Júlio de Mesquita Filho, São Jose do Rio Preto, São Paulo, Brazil
| | - Luis Octávio Regasini
- Department of Chemistry and Environmental Sciences, São Paulo State University Júlio de Mesquita Filho, São Jose do Rio Preto, São Paulo, Brazil
| | - Pedro Luiz Rosalen
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, 13414 903 Piracicaba, São Paulo, Brazil
| |
Collapse
|
11
|
A short artificial antimicrobial peptide shows potential to prevent or treat bone infections. Sci Rep 2017; 7:1506. [PMID: 28473710 PMCID: PMC5431435 DOI: 10.1038/s41598-017-01698-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/03/2017] [Indexed: 01/22/2023] Open
Abstract
Infection of bone is a severe complication due to the variety of bacteria causing it, their resistance against classical antibiotics, the formation of a biofilm and the difficulty to eradicate it. Antimicrobial peptides (AMPs) are naturally occurring peptides and promising candidates for treatment of joint infections. This study aimed to analyze the effect of short artificial peptides derived from an optimized library regarding (1) antimicrobial effect on different bacterial species, (2) efficacy on biofilms, and (3) effect on osteoblast‑like cells. Culturing the AMP-modifications with Escherichia coli, Enterococcus faecalis, Pseudomonas aeruginosa, Staphylococcus aureus (including clinical isolates of MRSA and MSSA) and Staphylococcus epidermidis identified one candidate that was most effective against all bacteria. This AMP was also able to reduce biofilm as demonstrated by FISH and microcalorimetry. Osteoblast viability and differentiation were not negatively affected by the AMP. A cation concentration comparable to that physiologically occurring in blood had almost no negative effect on AMP activity and even with 10% serum bacterial growth was inhibited. Bacteria internalized into osteoblasts were reduced by the AMP. Taken together the results demonstrate a high antimicrobial activity of the AMP even against bacteria incorporated in a biofilm or internalized into cells without harming human osteoblasts.
Collapse
|
12
|
Casillo A, Papa R, Ricciardelli A, Sannino F, Ziaco M, Tilotta M, Selan L, Marino G, Corsaro MM, Tutino ML, Artini M, Parrilli E. Anti-Biofilm Activity of a Long-Chain Fatty Aldehyde from Antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis Biofilm. Front Cell Infect Microbiol 2017; 7:46. [PMID: 28280714 PMCID: PMC5322152 DOI: 10.3389/fcimb.2017.00046] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/07/2017] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus epidermidis is a harmless human skin colonizer responsible for ~20% of orthopedic device-related infections due to its capability to form biofilm. Nowadays there is an interest in the development of anti-biofilm molecules. Marine bacteria represent a still underexploited source of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. Previous results have demonstrated that the culture supernatant of Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125 impairs the formation of S. epidermidis biofilm. Further, evidence supports the hydrophobic nature of the active molecule, which has been suggested to act as a signal molecule. In this paper we describe an efficient activity-guided purification protocol which allowed us to purify this anti-biofilm molecule and structurally characterize it by NMR and mass spectrometry analyses. Our results demonstrate that the anti-biofilm molecule is pentadecanal, a long-chain fatty aldehyde, whose anti-S. epidermidis biofilm activity has been assessed using both static and dynamic biofilm assays. The specificity of its action on S. epidermidis biofilm has been demonstrated by testing chemical analogs of pentadecanal differing either in the length of the aliphatic chain or in their functional group properties. Further, indications of the mode of action of pentadecanal have been collected by studying the bioluminescence of a Vibrio harveyi reporter strain for the detection of autoinducer AI-2 like activities. The data collected suggest that pentadecanal acts as an AI-2 signal. Moreover, the aldehyde metabolic role and synthesis in the Antarctic source strain has been investigated. To the best of our knowledge, this is the first report on the identification of an anti-biofilm molecule form from cold-adapted bacteria and on the action of a long-chain fatty aldehyde acting as an anti-biofilm molecule against S. epidermidis.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Annarita Ricciardelli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Filomena Sannino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Marcello Ziaco
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Marco Tilotta
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Gennaro Marino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Maria M Corsaro
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Maria L Tutino
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University Rome, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Federico II University, Complesso Universitario Monte Sant'Angelo Naples, Italy
| |
Collapse
|
13
|
Bacterial Infection and Implant Loosening in Hip and Knee Arthroplasty: Evaluation of 209 Cases. MATERIALS 2016; 9:ma9110871. [PMID: 28773989 PMCID: PMC5457256 DOI: 10.3390/ma9110871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 10/02/2016] [Accepted: 10/11/2016] [Indexed: 12/19/2022]
Abstract
The aim of this study was to evaluate bacteria species detected in a large number of patients treated for prosthetic joint infection of the hip and knee at a single specialized center. Furthermore, the rate of implant loosening was investigated in a time-dependent manner for the most frequently detected bacteria species. A retrospective analysis of patients (n = 209) treated for prosthetic joint infection of the hip and knee was performed. The following parameters were evaluated: C-Reactive Protein (CRP) concentration, microbiological evaluation of tissue samples, loosening of the implant, the time that had elapsed since the primary prosthetic joint replacement, and the duration since the last surgical intervention. Coagulase-negative Staphylococcus spp. were most frequently detected, followed by Staphylococcus aureus. Differences in CRP concentration were detected among various bacteria species. Osteolysis was not associated with one causative agent in particular. Patients who had undergone previous revision surgery had a higher probability of implant loosening. Coagulase-negative Staphylococcus spp. are the most common causative agents of prosthetic joint infection and show no significant differences with regard to implant loosening or the time-course when compared to S. aureus. Infections with Enterococcus spp. seem to develop faster than with other bacteria species. The risk of implant loosening increases with revision surgery, in particular in the hip joint.
Collapse
|
14
|
The comparison of antimicrobial effectiveness of contact lens solutions. Int Ophthalmol 2016; 37:1103-1114. [PMID: 27738866 DOI: 10.1007/s10792-016-0375-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE The aim of this study was to compare the effects of widely used multipurpose contact lens solutions against Staphylococcus aureus and Pseudomonas aeruginosa, in addition to cystic and trophozoite forms of Acanthamoeba castellanii and A. polyphaga, that cause microbial keratitis. METHODS Three multipurpose solutions were tested: SOLO-care, ReNu, and Opti-Free Express. The test solutions were challenged with P. aeruginosa (ATCC 27853) and S. aureus (ATCC 2913) based on the ISO stand-alone and regiment test procedure for disinfecting products, A. polyphaga (ATCC 30871) and A. castellanii (1501/1A) cystic and trophozoite forms. Multipurpose solutions were sampled for surviving microorganisms at manufacturer's minimum recommended disinfection time. The number of viable organisms was determined, and log reductions were calculated. RESULTS ReNu and SOLO-care resulted in a reduction greater than the required mean 3.0 logarithmic reduction against S. aureus, and SOLO-care and Opti-Free Express resulted in a reduction more than the required mean 3.0 logarithmic reduction against P. aeruginosa. Against the cystic and trophozoite forms of A. castellanii, the log reduction provided by SOLO-care was 1.01 and 1.31 log, respectively. ReNu provided a 0.83 log reduction of the cystic form and a 1.21 log reduction of the trophozoite form. Using Opti-Free Express, the log reduction for both forms was 1.31. SOLO-care led to a 0.61 log reduction of the cystic form of A. polyphaga and a 1.01 log reduction of the trophozoite form. ReNu provided a 0.41 log reduction of the cystic form and a 4.99 log reduction of the trophozoite form. Opti-free Express resulted in a 0.89 log reduction of the cystic form and a 3.11 log reduction of the trophozoite form. CONCLUSIONS Multipurpose contact lens solutions using similar regimens can show different disinfection abilities.
Collapse
|
15
|
Ravanetti F, Chiesa R, Ossiprandi MC, Gazza F, Farina V, Martini FM, Di Lecce R, Gnudi G, Della Valle C, Gavini J, Cacchioli A. Osteogenic response and osteoprotective effects in vivo of a nanostructured titanium surface with antibacterial properties. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:52. [PMID: 26787484 DOI: 10.1007/s10856-015-5661-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
In implantology, as an alternative approach to the use of antibiotics, direct surface modifications of the implant addressed to inhibit bacterial adhesion and to limit bacterial proliferation are a promising tactic. The present study evaluates in an in vivo normal model the osteogenic response and the osteointegration of an anodic spark deposition nanostructured titanium surface doped with gallium (ASD + Ga) in comparison with two other surface treatments of titanium: an anodic spark deposition treatment without gallium (ASD) and an acid etching treatment (CTR). Moreover the study assesses the osteoprotective potential and the antibacterial effect of the previously mentioned surface treatments in an experimentally-induced peri-implantitis model. The obtained data points out a more rapid primary fixation in ASD and ASD + Ga implants, compared with CTR surface. Regarding the antibacterial properties, the ASD + Ga surface shows osteoprotective action on bone peri-implant tissue in vivo as well as an antibacterial effect within the first considered time point.
Collapse
Affiliation(s)
- F Ravanetti
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy.
| | - R Chiesa
- Department of Chemistry, Materials and Materials Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - M C Ossiprandi
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - F Gazza
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - V Farina
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - F M Martini
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - R Di Lecce
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - G Gnudi
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - C Della Valle
- Department of Chemistry, Materials and Materials Engineering "G. Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milan, Italy
| | - J Gavini
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| | - A Cacchioli
- Department of Veterinary Science, University of Parma, Via del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
16
|
Serratiopeptidase: a well-known metalloprotease with a new non-proteolytic activity against S. aureus biofilm. BMC Microbiol 2015; 15:207. [PMID: 26453184 PMCID: PMC4600273 DOI: 10.1186/s12866-015-0548-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/02/2015] [Indexed: 12/29/2022] Open
Abstract
Background The use of indwelling medical devices is associated with a significant risk of infections by Staphylococcus aureus (S. aureus) which possesses a variety of virulence factors including many toxins and the ability to invade eukaryotic cells or to form biofilm on biotic and abiotic surfaces. The virulence factors above described are often related to proteins exposed on the bacterial surface. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases. Previously reports evaluated the anti-infective properties of serratiopeptidase (Spep), an extracellular metalloprotease produced by Serratia marcescens ATCC 21074 (E-15), in impairing virulence-related staphylococcal properties, such as attachment to inert surfaces and adhesion/invasion on eukaryotic cells. However, to date its mechanism of action is unknown. Methods Spep gene was PCR amplified and cloned into expression vector pET28b(+). The mutant EspepA was constructed from plasmid pET28b-Spep applying the one-step overlap extension PCR strategy. There sulting plasmids were costransformed in EcBL21(DE3) cells with the plasmid pRuW4inh1 harboring the Erwinia chrysanthemi secretion system. Bacterial pellets and supernatants were collected and analyzed by SDS-PAGE and zymography. The unambiguous identification and a detailed structure characterization of both the wild type and the mutant Spep were obtained by mass spectrometric analyses. The resultant supernatants sterilized by filtration were separately used to condition biofilm formation of S. aureus. Quantification was based on crystal violet method. Results In this work we constructed Spep mutant by substituting the glutamic acid in the catalytic site with a residue of alanine. In this manner we were able to evaluate the anti-biofilm activity of Spep mutant in absence of proteolytic activity. As expected, this mutant did not display protease activity but it retained its anti-biofilm properties, suggesting that this action is independent by enzymatic activity. Conclusions New knowledge obtained from data reported in this paper calls attention to a novel mechanism of action of Spep. This protein could be developed as a potential “antipathogenic agent” capable to impair the ability of S. aureus to form biofilm on prostheses, catheters and medical devices, exploiting a mechanism different from the proteolytic activity.
Collapse
|
17
|
Biofilm-based implant infections in orthopaedics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 830:29-46. [PMID: 25366219 DOI: 10.1007/978-3-319-11038-7_2] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The demand for joint replacement surgery is continuously increasing with rising costs for hospitals and healthcare systems. Staphylococci are the most prevalent etiological agents of orthopedic infections. After an initial adhesin-mediated implant colonization, Staphylococcus aureus and Staphylococcus epidermidis produce biofilm. Biofilm formation proceeds as a four-step process: (1) initial attachment of bacterial cells; (2) cell aggregation and accumulation in multiple cell layers; (3) biofilm maturation and (4) detachment of cells from the biofilm into a planktonic state to initiate a new cycle of biofilm formation elsewhere. The encasing of bacteria in biofilms gives rise to insuperable difficulties not only in the treatment of the infection, but also in assessing the state and the nature of the infection using traditional cultural methods. Therefore, DNA-based molecular methods have been developed to provide rapid identification of all microbial pathogens. To combat biofilm-centered implant infections, new strategies are being developed, among which anti-infective or infective-resistant materials are at the forefront. Infection-resistant materials can be based on different approaches: (i) modifying the biomaterial surface to give anti-adhesive properties, (ii) doping the material with antimicrobial substances, (iii) combining anti-adhesive and antimicrobial effects in the same coating, (iv) designing materials able to oppose biofilm formation and support bone repair.
Collapse
|
18
|
Campoccia D, Visai L, Renò F, Cangini I, Rizzi M, Poggi A, Montanaro L, Rimondini L, Arciola CR. Bacterial adhesion to poly-(D,L)lactic acid blended with vitamin E: toward gentle anti-infective biomaterials. J Biomed Mater Res A 2014; 103:1447-58. [PMID: 25046271 DOI: 10.1002/jbm.a.35284] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 06/28/2014] [Accepted: 07/18/2014] [Indexed: 12/23/2022]
Abstract
Anti-infective properties of biomedical materials are often achieved by loading or coating them with powerful bactericides. Undesirably, these bioactive molecules can damage the host cells at the biomaterial-tissues interface and, sometimes, even determine systemic toxic effects. The search for biomaterials able to actively resist infection while displaying a safe cytocompatibility profile toward eukaryotic cells is being progressively developed. Poly-(D,L)lactic acid (PLA) is a broadly used resorbable material with established biocompatibility properties. The dissolving surfaces of a biodegradable material tend to be per se elusive for bacteria. Here, films of pristine PLA, of PLA blended with vitamin E (VitE) and PLA blended with vitamin E acetate (VitE ac) were challenged in vitro with the biofilm-producers Staphylococcus epidermidis RP62A and Staphylococcus aureus ATCC25923. The bacterial adhesion properties of the different materials were investigated on small film disc specimens by a method based on microtiter plates. Adherent bacteria were quantified by both CFU plating and bioluminescence. Significant decrease in bacterial adhesion and biofilm accumulation was found on the surface of both the enriched polymers. These findings, together with the favorable intrinsic properties of PLA and the desirable bioactivities conferred by VitE, point up the VitE-blended PLA polymers as gentle anti-infective biomaterials.
Collapse
Affiliation(s)
- Davide Campoccia
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The interaction of bacteria with engineered nanostructured polymeric materials: a review. ScientificWorldJournal 2014; 2014:410423. [PMID: 25025086 PMCID: PMC4084677 DOI: 10.1155/2014/410423] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 12/17/2022] Open
Abstract
Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections.
Collapse
|
20
|
From Koch's postulates to biofilm theory. The lesson of Bill Costerton. Int J Artif Organs 2013; 35:695-9. [PMID: 23138704 DOI: 10.5301/ijao.5000169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2012] [Indexed: 11/20/2022]
Abstract
The clinical diagnoses of implant infections pose insurmountable difficulties for cultural methods because of their frequent failure when bacteria are growing in biofilms. In 1978 Bill Costerton warned that chronic infections in patients with indwelling medical devices were caused by bacteria growing in well-developed glycocalyx-enclosed biofilms and that bacteria within biofilms resist antibiotic therapies and immune host defenses. Costerton's "biofilm theory" opened two lines of scientific endeavor: the study of the biochemistry and genetics of biofilm formation and function; and, on the other side, the search for new methods for medical diagnosis and treatment of biofilm-centered implant infections. This Editorial and the entire 2012 issue "Focus on Implant Infections" are dedicated to the memory of Bill Costerton, recognized worldwide as the Father of Biofilms for his innovation and body of work on infections caused by sessile bacteria. Bill Costerton was a great scientist, heedful both to the biological aspects of biofilms and to the medical challenges of new diagnostic methods and modern therapeutic approaches to implant infections. But, most of all, he was a charming Maestro for the large number of colleagues and students whose enthusiasm for the science he was able to nourish. Bill passed away on May 12th, 2012 and the entire science community mourns the death of a friend and a leader.
Collapse
|
21
|
Papa R, Artini M, Cellini A, Tilotta M, Galano E, Pucci P, Amoresano A, Selan L. A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Microb Pathog 2013; 63:44-53. [PMID: 23811076 DOI: 10.1016/j.micpath.2013.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 04/29/2013] [Accepted: 05/06/2013] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is a flexible microbial pathogen frequently isolated from community-acquired and nosocomial infections. S. aureus expresses a wide array of secreted and cell surface-associated virulence factors, including proteins that promote adhesion to damaged tissue and to the surface of host cells, and that bind proteins in blood to help evade immune responses. Furthermore, surface proteins have a fundamental role in virulence related properties of S. aureus, including biofilm formation. The present study evaluates the anti-infective capabilities of a secreted protein of Serratia marcescens (serratiopeptidase, SPEP), in impairing some staphylococcal virulence-related properties, such as attachment to inert surfaces and adhesion/invasion on eukaryotic cells. SPEP seems to exert its action by modulating specific proteins. It is not assessed if this action is due to the proteolytic activity of SPEP or to a specific mechanism which triggers an out/inside signal. Proteomic studies performed on surface proteins extracted from SPEP treated S. aureus cultures revealed that a number of proteins are affected by the treatment. Among these we found the adhesin/autolysin Atl, SdrD, Sbi, EF-Tu and EF-G. EF-Tu and EF-G are known to perform a variety of function, depending on their cytoplasmic or surface localization. All these factors can facilitate bacterial colonization, persistence and invasion of host tissues. Our results suggest that SPEP could be developed as a potential "anti-infective agent" capable to hinder the entry of S. aureus into human tissues, and also impairs the ability of this pathogen to adhere to prostheses, catheters and medical devices.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sanchez CJ, Ward CL, Romano DR, Hurtgen BJ, Hardy SK, Woodbury RL, Trevino AV, Rathbone CR, Wenke JC. Staphylococcus aureus biofilms decrease osteoblast viability, inhibits osteogenic differentiation, and increases bone resorption in vitro. BMC Musculoskelet Disord 2013; 14:187. [PMID: 23767824 PMCID: PMC3691632 DOI: 10.1186/1471-2474-14-187] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/06/2013] [Indexed: 12/25/2022] Open
Abstract
Background Osteomyelitis is a severe and often debilitating disease characterized by inflammatory destruction of bone. Despite treatment, chronic infection often develops which is associated with increased rates of treatment failure, delayed osseous-union, and extremity amputation. Within affected bone, bacteria exist as biofilms, however the impact of biofilms on osteoblasts during disease are unknown. Herein, we evaluated the effect of S. aureus biofilms on osteoblast viability, osteogenic potential, and the expression of the pro-osteoclast factor, receptor activator of NF-kB ligand (RANK-L). Methods Osteoblasts were exposed to biofilm conditioned media (BCM) from clinical wound isolates of Staphylococcus aureus under normal growth and osteogenic conditions to assess cellular viability and osteoblast differentiation, respectively. Cell viability was evaluated using a live/dead assay and by quantifying total cellular DNA at days 0, 1, 3, 5, and 7. Apoptosis following treatment with BCM was measured by flow-cytometry using the annexin V-FITC/PI apoptosis kit. Osteogenic differentiation was assessed by measuring alkaline phosphatase activity and intracellular accumulation of calcium and osteocalcin for up to 21 days following exposure to BCM. Expression of genes involved in osteogenic differentiation and osteoclast regulation, were also evaluated by quantitative real-time PCR. Results BCM from clinical strains of S. aureus reduced osteoblast viability which was accompanied by an increase in apoptosis. Osteogenic differentiation was significantly inhibited following treatment with BCM as indicated by decreased alkaline phosphatase activity, decreased intracellular accumulation of calcium and inorganic phosphate, as well as reduced expression of transcription factors and genes involved in bone mineralization in viable cells. Importantly, exposure of osteoblasts to BCM resulted in up-regulated expression of RANK-L and increase in the RANK-L/OPG ratio compared to the untreated controls. Conclusions Together these studies suggest that soluble factors produced by S. aureus biofilms may contribute to bone loss during chronic osteomyelitis simultaneously by: (1) reducing osteoblast viability and osteogenic potential thereby limiting new bone growth and (2) promoting bone resorption through increased expression of RANK-L by osteoblasts. To our knowledge these are the first studies to demonstrate the impact of staphylococcal biofilms on osteoblast function, and provide an enhanced understanding of the pathogenic role of staphylococcal biofilms during osteomyelitis.
Collapse
Affiliation(s)
- Carlos J Sanchez
- Department of Extremity Trauma and Regenerative Medicine, United States Army Institute of Surgical Research, Ft, Sam Houston, San Antonio, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Anti-biofilm activity of the Antarctic marine bacterium Pseudoalteromonas haloplanktis TAC125. Res Microbiol 2013; 164:450-6. [DOI: 10.1016/j.resmic.2013.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/24/2013] [Indexed: 01/05/2023]
|
24
|
Jauregui CE, Mansell JP, Jepson MA, Jenkinson HF. Differential interactions of Streptococcus gordonii and Staphylococcus aureus with cultured osteoblasts. Mol Oral Microbiol 2013; 28:250-66. [PMID: 23413785 DOI: 10.1111/omi.12022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2012] [Indexed: 01/18/2023]
Abstract
The impedance of normal osteoblast function by microorganisms is at least in part responsible for the failure of dental or orthopedic implants. Staphylococcus aureus is a major pathogen of bone, and exhibits high levels of adhesion and invasion of osteoblasts. In this article we show that the commensal oral bacterium Streptococcus gordonii also adheres to and is internalized by osteoblasts. Entry of S. gordonii cells had typical features of phagocytosis, similar to S. aureus, with membrane protrusions characterizing initial uptake, and closure of the osteoblast membrane leading to engulfment. The sensitivities of S. gordonii internalization to inhibitors cytochalasin D, colchicine and monensin indicated uptake through endocytosis, with requirement for actin accumulation. Internalization levels of S. gordonii were enhanced by expression of S. aureus fibronectin-binding protein A (FnBPA) on the S. gordonii cell surface. Lysosomal-associated membrane protein-1 phagosomal membrane marker accumulated with intracellular S. aureus and S. gordonii FnBPA, indicating trafficking of bacteria into the late endosomal/lysosomal compartment. Streptococcus gordonii cells did not survive intracellularly for more than 12 h, unless expressing FnBPA, whereas S. aureus showed extended survival times (>48 h). Both S. aureus and S. gordonii DL-1 elicited a rapid interleukin-8 response by osteoblasts, whereas S. gordonii FnBPA was slower. Only S. aureus elicited an interleukin-6 response. Hence, S. gordonii invades osteoblasts by a mechanism similar to that exhibited by S. aureus, and elicits a proinflammatory response that may promote bone resorption.
Collapse
Affiliation(s)
- C E Jauregui
- School of Oral and Dental Sciences, University of Bristol, Bristol, UK
| | | | | | | |
Collapse
|