1
|
Guo P, Zhang B, Zhao J, Wang C, Wang Z, Liu A, Du G. Medicine-Food Herbs against Alzheimer’s Disease: A Review of Their Traditional Functional Features, Substance Basis, Clinical Practices and Mechanisms of Action. Molecules 2022; 27:molecules27030901. [PMID: 35164167 PMCID: PMC8839204 DOI: 10.3390/molecules27030901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/29/2021] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive, neurodegenerative disorder that currently has reached epidemic proportions among elderly populations around the world. In China, available traditional Chinese medicines (TCMs) that organically combine functional foods with medicinal values are named “Medicine Food Homology (MFH)”. In this review, we focused on MFH varieties for their traditional functional features, substance bases, clinical uses, and mechanisms of action (MOAs) for AD prevention and treatment. We consider the antiAD active constituents from MFH species, their effects on in vitro/in vivo AD models, and their drug targets and signal pathways by summing up the literature via a systematic electronic search (SciFinder, PubMed, and Web of Science). In this paper, several MFH plant sources are discussed in detail from in vitro/in vivo models and methods, to MOAs. We found that most of the MFH varieties exert neuroprotective effects and ameliorate cognitive impairments by inhibiting neuropathological signs (Aβ-induced toxicity, amyloid precursor protein, and phosphorylated Tau immunoreactivity), including anti-inflammation, antioxidative stress, antiautophagy, and antiapoptosis, etc. Indeed, some MFH substances and their related phytochemicals have a broad spectrum of activities, so they are superior to simple single-target drugs in treating chronic diseases. This review can provide significant guidance for people’s healthy lifestyles and drug development for AD prevention and treatment.
Collapse
Affiliation(s)
- Pengfei Guo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Baoyue Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun Zhao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chao Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ailin Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (A.L.); (G.D.)
| | - Guanhua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; (P.G.); (B.Z.); (J.Z.); (C.W.); (Z.W.)
- Beijing Key Laboratory of Drug Target Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Correspondence: (A.L.); (G.D.)
| |
Collapse
|
2
|
Yow YY, Goh TK, Nyiew KY, Lim LW, Phang SM, Lim SH, Ratnayeke S, Wong KH. Therapeutic Potential of Complementary and Alternative Medicines in Peripheral Nerve Regeneration: A Systematic Review. Cells 2021; 10:cells10092194. [PMID: 34571842 PMCID: PMC8472132 DOI: 10.3390/cells10092194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the progressive advances, current standards of treatments for peripheral nerve injury do not guarantee complete recovery. Thus, alternative therapeutic interventions should be considered. Complementary and alternative medicines (CAMs) are widely explored for their therapeutic value, but their potential use in peripheral nerve regeneration is underappreciated. The present systematic review, designed according to guidelines of Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols, aims to present and discuss the current literature on the neuroregenerative potential of CAMs, focusing on plants or herbs, mushrooms, decoctions, and their respective natural products. The available literature on CAMs associated with peripheral nerve regeneration published up to 2020 were retrieved from PubMed, Scopus, and Web of Science. According to current literature, the neuroregenerative potential of Achyranthes bidentata, Astragalus membranaceus, Curcuma longa, Panax ginseng, and Hericium erinaceus are the most widely studied. Various CAMs enhanced proliferation and migration of Schwann cells in vitro, primarily through activation of MAPK pathway and FGF-2 signaling, respectively. Animal studies demonstrated the ability of CAMs to promote peripheral nerve regeneration and functional recovery, which are partially associated with modulations of neurotrophic factors, pro-inflammatory cytokines, and anti-apoptotic signaling. This systematic review provides evidence for the potential use of CAMs in the management of peripheral nerve injury.
Collapse
Affiliation(s)
- Yoon-Yen Yow
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Tiong-Keat Goh
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Ke-Ying Nyiew
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Lee-Wei Lim
- Neuromodulation Laboratory, School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, L4 Laboratory Block, Hong Kong
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| | - Siew-Moi Phang
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Shyamala Ratnayeke
- Department of Biological Sciences, School of Medicine and Life Sciences, Sunway University, Petaling Jaya 47500, Malaysia; (T.-K.G.); (K.-Y.N.); (S.R.)
| | - Kah-Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Correspondence: (Y.-Y.Y.); (L.-W.L.); (K.-H.W.); Tel.: +603-7491-8622 (Y.-Y.Y.); +852-3917-6830 (L.-W.L.); +603-7967-4729 (K.-H.W.)
| |
Collapse
|
3
|
Li J, Du Q, Li N, Du S, Sun Z. Alpiniae oxyphyllae Fructus and Alzheimer's disease: An update and current perspective on this traditional Chinese medicine. Biomed Pharmacother 2020; 135:111167. [PMID: 33383373 DOI: 10.1016/j.biopha.2020.111167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/05/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common progressive neuro-degenerative disease, and the morbidity and mortality are still on the rise. In spite of recent advances in AD treatment, their clinical efficacy has been limited, non-curative and easy to drug resistance. Alpiniae oxyphyllae Fructus (AOF), derived from the dried and mature fruits of the Zingiberaceae plant Alpinia oxyphylla Miq, is a choice in traditional Chinese medicine to treat AD, which has a good effect and has been used for a long time. Recent studies have demonstrated its potent activities in modulating multiple signaling pathways associated with β-amyloid deposition, tau protein phosphorylation, chronic inflammation, oxidative stress. The neuropharmacological mechanism of AOF in AD have been fully illustrated in numerous studies. In this review, we first briefly described the active components of AOF and related mechanism for treating AD. And we also provide a systematic overview of recent progress on the pharmacokinetic characteristics of the active ingredients of AOF and analyzed their bioavailability differences in the development of AD. Thus, AOF hold a great therapeutic potential in the treatment of AD and is worthy of further research and promotion.
Collapse
Affiliation(s)
- Jia Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Na Li
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuzhang Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Zhi Sun
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Zhang Q, Zheng Y, Hu X, Hu X, Lv W, Lv D, Chen J, Wu M, Song Q, Shentu J. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Alpinia oxyphylla Miquel: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 224:149-168. [PMID: 29738847 DOI: 10.1016/j.jep.2018.05.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL USAGES Fructus Alpiniae oxyphyllae (A. oxyphylla) is an important medicinal plant that is used not only as an edible fruit, but also as an important traditional medicine for benefiting cognitive performance and alleviating a wide spectrum of diseases. Such as; warming kidney, securing essence and arresting polyuria, as well as warming the spleen and stopping diarrhea and saliva. AIMS The purpose of this review is to provide updated, comprehensive and categorized information on the traditional uses, phytochemistry and pharmacological research of A. oxyphylla in order to explore their therapeutic potential and establish a solid foundation for directing future research. MATERIALS AND METHODS All the available information on A. oxyphylla was collected via electronic search (using Pubmed, SciFinder, Scirus, Google Scholar and Web of Science) and additionally a number of unpublished resources, (e.g. books, Ph.D. and M.Sc. dissertations, government reports). RESULTS Phytochemical research on A. oxyphylla has led to the isolation of components such as essential oils, terpenes, diarylheptanoids, flavones, nucleobases and nucleosides, steroids and others. Crude extracts, fractions and phytochemical constituents isolated from A. oxyphylla showed a wide spectrum of in vitro and in vivo pharmacological activities like neuroprotective, anti-diarrheal, anti-diuretic, anti-neoplastic, anti-oxidant, anti-inflammatory, anti-allergic, viscera protective and anti-diabetic activities. Neuroprotective, anti-cancer, anti-diarrheal and anti-diuretic effects are major areas of research conducted on A. oxyphylla. CONCLUSIONS Modern pharmacological studies have supported many traditional uses of A. oxyphylla, including nervous system, urinary system and gastrointestinal system disease. There was convincing evidence in experimental animal models in support of its neuroprotection, secure essence, reduce urination, and anti-carcinogenic effects. However, all the reported pharmacological activities were carried out at pre-clinical level and the authors urge further investigation in clinical trials about these therapeutic fields of A. oxyphylla.
Collapse
Affiliation(s)
- Qiao Zhang
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yunliang Zheng
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xingjiang Hu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiaolong Hu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, People's Republic of China
| | - Wenwen Lv
- Pharmacy Department, Binzhou Medical University Hospital, Binzhou 256603, People's Republic of China
| | - Duo Lv
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jinjin Chen
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Minglan Wu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Qichao Song
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Jianzhong Shentu
- Research Center for Clinical Pharmacy, State Key Laboratory for Diagnosis and Treatment of Infectious Disease, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.
| |
Collapse
|
5
|
Wang CY, Ding HZ, Tang X, Li ZG. Effect of Liuweibuqi capsules on CD4 +CD25 +Foxp3 + regulatory T cells, helper T cells and lung function in patients with stable chronic obstructive pulmonary disease complicated with lung Qi deficiency. J Thorac Dis 2018; 10:2700-2711. [PMID: 29997932 DOI: 10.21037/jtd.2018.04.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is predicted to become the fifth leading cause of disability and the third leading cause of death around the world by 2020. Though it is potentially treatable and preventable, evidence of brain structural alterations in COPD remains sparse and conflicting. We aim to investigate the effect of Liuweibuqi capsules on CD4+CD25+ Forkhead box protein 3+ (Foxp3+) regulatory T cells (Tregs), helper T cells (Th) and lung function in patients with stable COPD complicated with lung Qi deficiency. Methods COPD patients with lung Qi deficiency [458] were assigned into non-smoking COPD (NS-COPD), non-smoking control (NS-control), smoking COPD (S-COPD) and smoking control (S-control) groups, and healthy volunteers [245] into the non-smoking healthy (NSH) and smoking healthy (SH) groups. Levels of inflammatory cytokines were detected by Enzyme-linked immunoassay (ELISA). Contents of inflammatory cells, inflammatory marker, and CD4+CD25+Fox3+Tregs were measured by flow cytometry. FEV1/FVC (%) and FEV1 (%) were detected by pulmonary function test apparatus. Correlation between FEV1 (%) and Th1, Th2, Th17, Th1/Th2 or CD4+CD25+Fox3+Tregs was analyzed by Spearman rank correlation test. The related factors affecting treatment efficacy was assessed by logistic analysis. Results COPD patients and smoking people showed higher level of INF-γ, IL-4, IL-17, Th1, Th2, Th17 and Th1/Th2 but lower level of CD4+CD25+Fox3+Tregs. Liuweibuqi capsules could decrease level of inflammatory cells, cytokines, and markers (especially Th17 and IL-17), and increase level of CD4+CD25+Fox3+Tregs. FEV1 (%) negatively correlated with Th1, Th2, Th17 and Th1/Th2 but positively correlated with CD4+CD25+Fox3+Tregs, and smoking may strengthen their correlation, but Liuweibuqi capsules may weaker their correlation. Levels of inflammatory cytokines, cells, marker, CD4+CD25+Fox3+Tregs, FEV1/FVC (%), FEV1 (%), smoking and Liuweibuqi capsules are factors affecting efficacy. Conclusions Taken together, our data support the notion that smoking is an important factor to induce and aggravate COPD. Liuweibuqi capsules could stimulate proliferation of CD4+CD25+Fox3+Tregs and decrease Th17 expression to improve the lung function in stable COPD patients with lung Qi deficiency, and it had obvious efficacy for smoking COPD patients.
Collapse
Affiliation(s)
- Cheng-Yang Wang
- Department of Traditional Chinese Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Huan-Zhang Ding
- Graduate School of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xiao Tang
- Graduate School of Anhui University of Chinese Medicine, Hefei 230038, China
| | - Ze-Geng Li
- Anhui Academy, Chinese Medicine, Hefei 230012, China
| |
Collapse
|
6
|
Chang YM, Chang HH, Tsai CC, Lin HJ, Ho TJ, Ye CX, Chiu PL, Chen YS, Chen RJ, Huang CY, Lin CC. Alpinia oxyphylla Miq. fruit extract activates IGFR-PI3K/Akt signaling to induce Schwann cell proliferation and sciatic nerve regeneration. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:184. [PMID: 28359314 PMCID: PMC5374583 DOI: 10.1186/s12906-017-1695-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 03/17/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND It is known that the medicinal herb Alpinia oxyphylla Miq. is widely used as a remedy for diarrhea as well as the symptoms accompanying hypertension and cerebrovascular disorders. Moreover, it has also been reported that Alpinia oxyphylla Miq. has beneficial effects on anti-senescence and neuro-protection. This study focuses on the molecular mechanisms by which the Alpinia oxyphylla Miq. fruits promote neuron regeneration. METHODS A piece of silicone rubber was guided across a 15 mm gap in the sciatic nerve of a rat. This nerve gap was then filled with various doses of Alpinia oxyphylla Miq. fruits to assess their regenerative effect on damaged nerves. Further, we investigated the role of Alpinia oxyphylla Miq. fruits in RSC96 Schwann cell proliferation. RESULTS Our current results showed that treatment with the extract of Alpinia oxyphylla Miq. fruits triggers the phosphorylated insulin-like growth factor-1 receptor- phosphatidylinositol 3-kinase/serine-threonine kinase pathway, and up-regulated the proliferating cell nuclear antigen in a dose-dependent manner. Cell cycle analysis on RSC96 Schwann cells showed that, after exposure to Alpinia oxyphylla Miq. fruit extract, the transition from the first gap phase to the synthesis phase occurs in 12-18 h. The expression of the cell cycle regulatory proteins cyclin D1, cyclin E and cyclin A increased in a dose-dependent manner. Transfection with a small interfering RNA blocked the expression of phosphatidylinositol 3-kinase and induced down-regulation both on the mRNA and protein levels, which resulted in a reduction of the expression of the survival factor B-cell lymphoma 2. CONCLUSION We provide positive results that demonstrate that Alpinia oxyphylla Miq. fruits facilitate the survival and proliferation of RSC96 cells via insulin-like growth factor-1 signaling.
Collapse
|
7
|
Comparison of DNA Methylation in Schwann Cells before and after Peripheral Nerve Injury in Rats. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5393268. [PMID: 28459064 PMCID: PMC5385226 DOI: 10.1155/2017/5393268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/23/2017] [Accepted: 03/08/2017] [Indexed: 01/13/2023]
Abstract
This study aims to find the difference of genomewide DNA methylation in Schwann cells (SCs) before and after peripheral nerve system (PNS) injury by Methylated DNA Immunoprecipitation Sequencing (MeDIP-Seq) and seek meaningful differentially methylated genes related to repairment of injured PNS. SCs harvested from sciatic nerve were named as activated Schwann cells (ASCs), and the ones harvested from brachial plexus were named as normal Schwann cells (NSCs). Genomic DNA of ASCs and NSCs were isolated and MeDIP-Seq was conducted. Differentially methylated genes and regions were discovered and analyzed by bioinformatic methods. MeDIP-Seq analysis showed methylation differences were identified between ASCs and NSCs. The distribution of differentially methylated regions (DMRs) peaks in different components of genome was mainly located in distal intergenic regions. GO and KEGG analysis of these methylated genes were also conducted. The expression patterns of hypermethylated genes (Dgcr8, Zeb2, Dixdc1, Sox2, and Shh) and hypomethylated genes (Gpr126, Birc2) detected by qRT-PCR were opposite to the MeDIP analysis data with significance (p < 0.05), which proved MeDIP analysis data were real and believable. Our data serve as a basis for understanding the injury-induced epigenetic changes in SCs and the foundation for further studies on repair of PNS injury.
Collapse
|
8
|
Lv J, Sun X, Ma J, Ma X, Zhang Y, Li F, Li Y, Zhao Z. Netrin-1 induces the migration of Schwann cells via p38 MAPK and PI3K-Akt signaling pathway mediated by the UNC5B receptor. Biochem Biophys Res Commun 2015; 464:263-8. [PMID: 26116534 DOI: 10.1016/j.bbrc.2015.06.140] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 11/16/2022]
Abstract
Schwann cells (SCs) play an essentially supportive role in the regeneration of injured peripheral nerve system (PNS). As Netrin-1 is crucial for the normal development of nervous system (NS) and can direct the process of damaged PNS regeneration, our study was designed to determine the role of Netrin-1 in RSC96 Schwann cells (an immortalized rat Schwann cell line) proliferation and migration. Our studies demonstrated that Netrin-1 had no effect on RSC96 cells proliferation, while significantly promoted RSC96 cells migration. The Netrin-1-induced RSC96 cells migration was significantly attenuated by inhibition of p38 and PI3K through pretreatment with SB203580 and LY294002 respectively, but not inhibition of MEK1/2 and JNK by U0126-EtOH and SP600125 individually. Treatment with Netrin-1 enhanced the phosphorylation of p38 and Akt. QRT-PCR indicated that Netrin-1 and only its receptors Unc5a, Unc5b and Neogenin were expressed in RSC96 cells, among which Unc5b expressed the most. And UNC5B protein was significantly increased after stimulated by Netrin-1. In conclusion, we show here that Netrin-1-enhanced SCs migration is mediated by activating p38 MAPK and PI3K-Akt signal cascades via receptor UNC5B, which suggests that Netrin-1 could serve as a new therapeutic strategy and has potential application value for PNS regeneration.
Collapse
Affiliation(s)
- Jianwei Lv
- General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050, China
| | - Xiaolei Sun
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050, China
| | - Jianxiong Ma
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050, China
| | - Xinlong Ma
- General Hospital of Tianjin Medical University, No. 154, Anshan Road, Heping District, Tianjin 300052, China; Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050, China.
| | - Yang Zhang
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050, China
| | - Fengbo Li
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050, China
| | - Yanjun Li
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050, China
| | - Zhihu Zhao
- Tianjin Institute of Orthopedics in Traditional Chinese and Western Medicine, No. 155, Munan Road, Tianjin 300050, China
| |
Collapse
|