1
|
Cho M, Mahmoodi Z, Shetty P, Harrison LR, Arias Montecillo M, Perumal AS, Solana G, Nicolau DV, Nicolau DV. Protein Adsorption on Solid Surfaces: Data Mining, Database, Molecular Surface-Derived Properties, and Semiempirical Relationships. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28290-28306. [PMID: 38787331 DOI: 10.1021/acsami.4c06759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Protein adsorption on solid surfaces is a process relevant to biological, medical, industrial, and environmental applications. Despite this wide interest and advancement in measurement techniques, the complexity of protein adsorption has frustrated its accurate prediction. To address this challenge, here, data regarding protein adsorption reported in the last four decades was collected, checked for completeness and correctness, organized, and archived in an upgraded, freely accessible Biomolecular Adsorption Database, which is equivalent to a large-scale, ad hoc, crowd-sourced multifactorial experiment. The shape and physicochemical properties of the proteins present in the database were quantified on their molecular surfaces using an in-house program (ProMS) operating as an add-on to the PyMol software. Machine learning-based analysis indicated that protein adsorption on hydrophobic and hydrophilic surfaces is modulated by different sets of operational, structural, and molecular surface-based physicochemical parameters. Separately, the adsorption data regarding four "benchmark" proteins, i.e., lysozyme, albumin, IgG, and fibrinogen, was processed by piecewise linear regression with the protein monolayer acting as breakpoint, using the linearization of the Langmuir isotherm formalism, resulting in semiempirical relationships predicting protein adsorption. These relationships, derived separately for hydrophilic and hydrophobic surfaces, described well the protein concentration on the surface as a function of the protein concentration in solution, adsorbing surface contact angle, ionic strength, pH, and temperature of the carrying fluid, and the difference between pH and the isoelectric point of the protein. When applying the semiempirical relationships derived for benchmark proteins to two other "test" proteins with known PDB structure, i.e., β-lactoglobulin and α-lactalbumin, the errors of this extrapolation were found to be in a linear relationship with the dissimilarity between the benchmark and the test proteins. The work presented here can be used for the estimation of operational parameters modulating protein adsorption for various applications such as diagnostic devices, pharmaceuticals, biomaterials, or the food industry.
Collapse
Affiliation(s)
- Matthew Cho
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Zahra Mahmoodi
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Prasad Shetty
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Lauren R Harrison
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | - Maru Arias Montecillo
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
| | | | - Gerardin Solana
- Swinburne University of Technology, Hawthorn, Vic 3122, Australia
| | - Dan V Nicolau
- Swinburne University of Technology, Hawthorn, Vic 3122, Australia
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Peter Gorer Department of Immunobiology, King's College London, London SE1 1UL, U.K
| | - Dan V Nicolau
- Faculty of Engineering, Department of Bioengineering, McGill University, Montreal, Quebec H3A 0C3, Canada
- Swinburne University of Technology, Hawthorn, Vic 3122, Australia
| |
Collapse
|
2
|
Kim K, Su Y, Kucine AJ, Cheng K, Zhu D. Guided Bone Regeneration Using Barrier Membrane in Dental Applications. ACS Biomater Sci Eng 2023; 9:5457-5478. [PMID: 37650638 DOI: 10.1021/acsbiomaterials.3c00690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Guided bone regeneration (GBR) is a widely used technique in preclinical and clinical studies due to its predictability. Its main purpose is to prevent the migration of soft tissue into the osseous wound space, while allowing osseous cells to migrate to the site. GBR is classified into two main categories: resorbable and non-resorbable membranes. Resorbable membranes do not require a second surgery but tend to have a short resorption period. Conversely, non-resorbable membranes maintain their mechanical strength and prevent collapse. However, they require removal and are susceptible to membrane exposure. GBR is often used with bone substitute graft materials to fill the defect space and protect the bone graft. The membrane can also undergo various modifications, such as surface modification and biological factor loading, to improve barrier functions and bone regeneration. In addition, bone regeneration is largely related to osteoimmunology, a new field that focuses on the interactions between bone and the immune system. Understanding these interactions can help in developing new treatments for bone diseases and injuries. Overall, GBR has the potential to be a powerful tool in promoting bone regeneration. Further research in this area could lead to advancements in the field of bone healing. This review will highlight resorbable and non-resorbable membranes with cellular responses during bone regeneration, provide insights into immunological response during bone remodeling, and discuss antibacterial features.
Collapse
Affiliation(s)
- Kakyung Kim
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Yingchao Su
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Allan J Kucine
- Department of Oral and Maxillofacial Surgery, Stony Brook University, Stony Brook, New York 11794, United States
| | - Ke Cheng
- Department of Biomedical Engineering, Columbia University, New York City, New York 10027, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
3
|
Raffaini G. Adsorption and Self-Aggregation of Chiral [5]-Aza[6]helicenes on DNA Architecture: A Molecular Dynamics Study. J Phys Chem B 2023; 127:8285-8295. [PMID: 37751596 PMCID: PMC10561140 DOI: 10.1021/acs.jpcb.3c02487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Helicenes are an extremely interesting class of conjugated molecules without asymmetric carbon atoms but with intrinsic chirality. These molecules can interact with double-stranded chiral B-DNA architecture, modifying after their adsorption the hydrophilicity exposed by DNA to the biological environment. They also form ordered structures due to self-aggregation processes with possible different light emissions. Following initial studies based on molecular mechanics (MM) and molecular dynamics (MD) simulations regarding the adsorption and self-aggregation process of 5-aza[5]helicenes on double-stranded B-DNA, this theoretical work investigates the interaction between (M)- and (P)-5-aza[6]helicenes with double-helix DNA. Initially, the interaction of the pure single enantiomer with DNA is studied. Possible preferential absorption in minor or major grooves can occur. Afterward, the interaction of enantiopure compounds (M)- and (P)-5-aza[6]helicenes, potentially occurring in a racemic mixture at different concentrations, was investigated, taking into consideration both competitive adsorption on DNA and the possible helicenes' self-aggregation process. The structural selectivity of DNA binding and the role of helicene concentration in adsorption and the self-aggregation process are interesting. In addition, the ability to form ordered structures on DNA that follow its chiral architecture, thanks to favorable van der Waals intermolecular interactions, is curious.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department
of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy
- INSTM,
National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy
| |
Collapse
|
4
|
Subbotina J, Lobaskin V. Multiscale Modeling of Bio-Nano Interactions of Zero-Valent Silver Nanoparticles. J Phys Chem B 2022; 126:1301-1314. [PMID: 35132861 PMCID: PMC8859825 DOI: 10.1021/acs.jpcb.1c09525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Understanding the
specifics of interaction between the protein
and nanomaterial is crucial for designing efficient, safe, and selective
nanoplatforms, such as biosensor or nanocarrier systems. Routing experimental
screening for the most suitable complementary pair of biomolecule
and nanomaterial used in such nanoplatforms might be a resource-intensive
task. While a range of computational tools are available for prescreening
libraries of proteins for their interactions with small molecular
ligands, choices for high-throughput screening of protein libraries
for binding affinities to new and existing nanomaterials are very
limited. In the current work, we present the results of the systematic
computational study of interaction of various biomolecules with pristine
zero-valent noble metal nanoparticles, namely, AgNPs, by using the UnitedAtom multiscale approach. A set of blood plasma and
dietary proteins for which the interaction with AgNPs was described
experimentally were examined computationally to evaluate the performance
of the UnitedAtom method. A set of interfacial descriptors
(log PNM, adsorption affinities, and adsorption
affinity ranking), which can characterize the relative hydrophobicity/hydrophilicity/lipophilicity
of the nanosized silver and its ability to form bio(eco)corona, was
evaluated for future use in nano-QSAR/QSPR studies.
Collapse
Affiliation(s)
- Julia Subbotina
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| | - Vladimir Lobaskin
- School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Taemaitree F, Koseki Y, Dao ATN, Kasai H. Serum Albumin-treated SN-38 Prodrug Nanoparticles toward Cancer Treatment. CHEM LETT 2021. [DOI: 10.1246/cl.210253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Farsai Taemaitree
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Yoshitaka Koseki
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Anh Thi Ngoc Dao
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Hitoshi Kasai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
6
|
Surface Chemistry, Crystal Structure, Size and Topography Role in the Albumin Adsorption Process on TiO2 Anatase Crystallographic Faces and Its 3D-Nanocrystal: A Molecular Dynamics Study. COATINGS 2021. [DOI: 10.3390/coatings11040420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TiO2 is widely used in biomaterial implants. The topography, chemical and structural properties of titania surfaces are an important aspect to study. The size of TiO2 nanoparticles synthetized by sol–gel method can influence the responses in the biological environment, and by using appropriate heat treatments different contents of different polymorphs can be formed. Protein adsorption is a crucial step for the biological responses, involving, in particular, albumin, the most abundant blood protein. In this theoretical work, using molecular mechanics and molecular dynamics methods, the adsorption process of an albumin subdomain is reported both onto specific different crystallographic faces of TiO2 anatase and also on its ideal three-dimensional nanosized crystal, using the simulation protocol proposed in my previous theoretical studies about the adsorption process on hydrophobic ordered graphene-like or hydrophilic amorphous polymeric surfaces. The different surface chemistry of anatase crystalline faces and the nanocrystal topography influence the adsorption process, in particular the interaction strength and protein fragment conformation, then its biological activity. This theoretical study can be a useful tool to better understand how the surface chemistry, crystal structure, size and topography play a key role in protein adsorption process onto anatase surface so widely used as biomaterial.
Collapse
|
7
|
Raffaini G, Mele A, Caronna T. Adsorption of Chiral [5]-Aza[5]helicenes on DNA Can Modify Its Hydrophilicity and Affect Its Chiral Architecture: A Molecular Dynamics Study. MATERIALS 2020; 13:ma13215031. [PMID: 33171884 PMCID: PMC7664699 DOI: 10.3390/ma13215031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/03/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Helicenes are interesting chiral molecules without asymmetric carbon atoms but with intrinsic chirality. Functionalized 5-Aza[5]helicenes can form non-covalent complexes with anticancer drugs and therefore be potential carriers. The paper highlights the different structural selectivity for DNA binding for two enantiopure compounds and the influence of concentration on their adsorption and self-aggregation process. In this theoretical study based on atomistic molecular dynamics simulations the interaction between (M)- and (P)-5-Aza[5]helicenes with double helix B-DNA is investigated. At first the interaction of single pure enantiomer with DNA is studied, in order to find the preferred site of interaction at the major or minor groove. Afterwards, the interaction of the enantiomers at different concentrations was investigated considering both competitive adsorption on DNA and possible helicenes self-aggregation. Therefore, racemic mixtures were studied. The helicenes studied are able to bind DNA modulating or locally modifying its hydrophilic surface into hydrophobic after adsorption of the first helicene layer partially covering the negative charge of DNA at high concentration. The (P)-enantiomer shows a preferential binding affinity of DNA helical structure even during competitive adsorption in the racemic mixtures. These DNA/helicenes non-covalent complexes exhibit a more hydrophobic exposed surface and after self-aggregation a partially hidden DNA chiral architecture to the biological environment.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20131 Milano, Italy
- Correspondence:
| | - Andrea Mele
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
| | - Tullio Caronna
- Dipartimento di Ingegneria e Scienze Applicate, Università degli Studi di Bergamo, 24044 Bergamo, Italy;
| |
Collapse
|
8
|
Raffaini G, Ganazzoli F. Understanding Surface Interaction and Inclusion Complexes between Piroxicam and Native or Crosslinked β-Cyclodextrins: The Role of Drug Concentration. Molecules 2020; 25:molecules25122848. [PMID: 32575617 PMCID: PMC7355541 DOI: 10.3390/molecules25122848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 11/16/2022] Open
Abstract
Drug concentration plays an important role in the interaction with drug carriers affecting the kinetics of release process and toxicology effects. Cyclodextrins (CDs) can solubilize hydrophobic drugs in water enhancing their bioavailability. In this theoretical study based on molecular mechanics and molecular dynamics methods, the interactions between β-cyclodextrin and piroxicam, an important nonsteroidal anti-inflammatory drug, were investigated. At first, both host–guest complexes with native β-CD in the 1:1 and in 2:1 stoichiometry were considered without assuming any initial a priori inclusion: the resulting inclusion complexes were in good agreement with literature NMR data. The interaction between piroxicam and a β-CD nanosponge (NS) was then modeled at different concentrations. Two inclusion mechanisms were found. Moreover, piroxicam can interact with the external NS surface or with its crosslinkers, also forming one nanopore. At larger concentration, a nucleation process of drug aggregation induced by the first layer of adsorbed piroxicam molecules is observed. The flexibility of crosslinked β-CDs, which may be swollen or quite compact, changing the surface area accessible to drug molecules, and the dimension of the aggregate nucleated on the NS surface are important factors possibly affecting the kinetics of release, which shall be theoretically studied in more detail at specific concentrations.
Collapse
Affiliation(s)
- Giuseppina Raffaini
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-02-23993068
| | - Fabio Ganazzoli
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza L. Da Vinci 32, 20131 Milano, Italy;
- INSTM, National Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, 20133 Milano, Italy
| |
Collapse
|
9
|
Noor M, Goswami J, Davis VA. Comparison of Attachment and Antibacterial Activity of Covalent and Noncovalent Lysozyme-Functionalized Single-Walled Carbon Nanotubes. ACS OMEGA 2020; 5:2254-2259. [PMID: 32064386 PMCID: PMC7016910 DOI: 10.1021/acsomega.9b03387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Carbon nanotube-lysozyme (LSZ) conjugates provide an attractive combination of high strength and antimicrobial activity. However, there has not been a direct comparison of the covalent and noncovalent methods for creating them. In this work, single-walled carbon nanotubes (SWNT) were functionalized with LSZ using both noncovalent adsorption and covalent attachment via N-ethyl-N-(3-dimethylamino-propyl) carbodiimide hydrochloride-N-hydroxysuccinimide (EDC-NHS) chemistry. The amount of attached lysozyme, dispersion stability, and antimicrobial activity was compared. In addition, the mechanical properties of LSZ-SWNT in poly(vinyl alcohol) (PVA) composite films were investigated. Dispersions of covalently bound LSZ-SWNT had better dispersion stability. This was attributed to covalent functionalization enabling sustained SWNT dispersion at a lower LSZ/SWNT ratio. The covalently bound LSZ-SWNT also exhibited a lower initial rate of antibacterial response but were active over a longer time scale. Composite films made from LSZ-SWNT maintained similar activity as the corresponding dispersions. However, the noncovalent LSZ-SWNT films were stronger and more hydrolytically stable than those made from covalent LSZ-SWNT.
Collapse
Affiliation(s)
- Matthew
M. Noor
- Department of Chemical Engineering, Auburn University, 212 Ross Hal, Auburn, Alabama 36849, United States
| | - Joyanta Goswami
- Department of Chemical Engineering, Auburn University, 212 Ross Hal, Auburn, Alabama 36849, United States
| | - Virginia A. Davis
- Department of Chemical Engineering, Auburn University, 212 Ross Hal, Auburn, Alabama 36849, United States
| |
Collapse
|
10
|
Lazzari F, Manfredi A, Alongi J, Mendichi R, Ganazzoli F, Raffaini G, Ferruti P, Ranucci E. Self-Structuring in Water of Polyamidoamino Acids with Hydrophobic Side Chains Deriving from Natural α-Amino Acids. Polymers (Basel) 2018; 10:E1261. [PMID: 30961186 PMCID: PMC6401854 DOI: 10.3390/polym10111261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/31/2018] [Accepted: 11/11/2018] [Indexed: 11/23/2022] Open
Abstract
This paper reports on synthesis, acid-base properties and self-structuring in water of chiral polyamidoamino acids (PAACs) obtained by polyaddition of N,N'-methylenebisacrylamide with l-alanine, l-valine and l-leucine (M-l-Ala, M-l-Val, M-l-Leu) with potential for selective interactions with biomolecules. The polymers maintained the acid-base properties of amino acids. In water, the circular dichroism spectra of PAACs revealed pH-dependent structuring in the range 3⁻11 and in the wavelength interval 200⁻280 nm. Taking as reference the values at pH 3, the differential molar ellipticities were plotted in the pH interval 3⁻11. Sigmoidal curves were obtained presenting inflection points at pH 8.1, 6.8 and 7.3 for M-l-Ala, M-l-Val and M-l-Leu, respectively, corresponding to the amine half-ionization. Theoretical modeling showed that PAACs assumed stable folded conformations. Intramolecular interactions led to transoid arrangements of the main chain reminiscent of protein hairpin motif. Oligomers with ten repeat units had simulated gyration radii consistent with the hydrodynamic radii obtained by dynamic light scattering.
Collapse
Affiliation(s)
- Federica Lazzari
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Amedea Manfredi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Jenny Alongi
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Raniero Mendichi
- Istituto per lo Studio delle Macromolecole (CNR), Via E. Bassini 15, 20133 Milano, Italy.
| | - Fabio Ganazzoli
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy.
| | - Giuseppina Raffaini
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "G. Natta", Politecnico di Milano, via L. Mancinelli 7, 20131 Milano, Italy.
| | - Paolo Ferruti
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| | - Elisabetta Ranucci
- Dipartimento di Chimica, Università degli Studi di Milano, via C. Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
11
|
Borzooeian Z, Taslim ME, Ghasemi O, Rezvani S, Borzooeian G, Nourbakhsh A. A high precision method for length-based separation of carbon nanotubes using bio-conjugation, SDS-PAGE and silver staining. PLoS One 2018; 13:e0197972. [PMID: 29939999 PMCID: PMC6016930 DOI: 10.1371/journal.pone.0197972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 05/13/2018] [Indexed: 11/20/2022] Open
Abstract
Parametric separation of carbon nanotubes, especially based on their length is a challenge for a number of nano-tech researchers. We demonstrate a method to combine bio-conjugation, SDS-PAGE, and silver staining in order to separate carbon nanotubes on the basis of length. Egg-white lysozyme, conjugated covalently onto the single-walled carbon nanotubes surfaces using carbodiimide method. The proposed conjugation of a biomolecule onto the carbon nanotubes surfaces is a novel idea and a significant step forward for creating an indicator for length-based carbon nanotubes separation. The conjugation step was followed by SDS-PAGE and the nanotube fragments were precisely visualized using silver staining. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. In this method, we measured the length of nanotubes using different image analysis techniques which is based on a simplified hydrodynamic model. The method has high precision and resolution and is effective in separating the nanotubes by length which would be a valuable quality control tool for the manufacture of carbon nanotubes of specific lengths in bulk quantities. To this end, we were also able to measure the carbon nanotubes of different length, produced from different sonication time intervals.
Collapse
Affiliation(s)
- Zahra Borzooeian
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Mohammad E. Taslim
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, MA, United States of America
| | - Omid Ghasemi
- Merrimack Pharmaceuticals Inc, Cambridge, MA, United States of America
| | - Saina Rezvani
- Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, United States of America
| | - Giti Borzooeian
- Department of Biology, Payamnoor, University of Esfahan, Esfahan, Iran
| | - Amirhasan Nourbakhsh
- Department of Electrical Engineering Computer Science, Massachusetts Institute of Technology, Boston, MA, United States of America
| |
Collapse
|