1
|
Asami J, Hausen MA, Komatsu D, Ferreira LM, Silva GBG, da Silva LCSC, Baldo DA, Oliveira Junior JM, Motta AC, Duek EAR. Poly(L-co-D,L lactic acid-co-Trimethylene Carbonate) 3D printed scaffold cultivated with mesenchymal stem cells directed to bone reconstruction: In vitro and in vivo studies. J Biomater Appl 2022; 36:1550-1566. [PMID: 35130780 DOI: 10.1177/08853282211066246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A recent and quite promising technique for bone tissue engineering is the 3D printing, peculiarly regarding the production of high-quality scaffolds. The 3D printed scaffold strictly provides suitable characteristics for living cells, in order to induce treatment, reconstruction and substitution of injured tissue. The purpose of this work was to evaluate the behavior of the 3D scaffold based on Poly(L-co-D,L lactic acid-co-Trimethylene Carbonate) (PLDLA-TMC), which was designed in Solidworks™ software, projected in 3D Slicer™, 3D printed in filament extrusion, cultured with mesenchymal stem cells (MSCs) and tested in vitro and in vivo models. For in vitro study, the MSCs were seeded in a PLDLA-TMC 3D scaffold with 600 μm pore size and submitted to proliferation and osteogenic differentiation. The in vivo assays implanted the PLDLA-TMC scaffolds with or without MSCs in the calvaria of Wistar rats submitted to 8 mm cranial bone defect, in periods of 8-12 weeks. The results showed that PLDLA-TMC 3D scaffolds favored adherence and cell growth, and suggests an osteoinductive activity, which means that the material itself augmented cellular differentiation. The implanted PLDLA-TMC containing MSCs, showed better results after 12 weeks prior grafting, due the absence of inflammatory processes, enlarged regeneration of bone tissue and facilitated angiogenesis. Notwithstanding, the 3D PLDLA-TMC itself implanted enriched tissue repair; the addition of cells known to upregulate tissue healing reinforce the perspectives for the PLDLA-TMC applications in the field of bone tissue engineering in clinical trials.
Collapse
Affiliation(s)
- Jessica Asami
- Post-Graduation Program in Biotechnology and Environmental Monitoring (PPGBMA), 67780Federal University of Sao Carlos (UFSCar), Sorocaba, SP, Brazil
| | - Moema A Hausen
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil.,Sorocaba's Technology Park Alexandre Beldi Netto, 28104Sorocaba, SP, Brazil
| | - Lucas M Ferreira
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Guilherme B G Silva
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Lucas C S C da Silva
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Denicezar A Baldo
- Laboratory of Applied Nuclear Physics, 28104University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - José M Oliveira Junior
- Laboratory of Applied Nuclear Physics, 28104University of Sorocaba (UNISO), Sorocaba, SP, Brazil
| | - Adriana C Motta
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil
| | - Eliana A R Duek
- Post-Graduation Program in Biotechnology and Environmental Monitoring (PPGBMA), 67780Federal University of Sao Carlos (UFSCar), Sorocaba, SP, Brazil.,Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), 67828Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP, Brazil.,Sorocaba's Technology Park Alexandre Beldi Netto, 28104Sorocaba, SP, Brazil.,Mechanical Engineering Faculty (FEM), 130242State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
2
|
Enhanced osteoinductive capacity of poly(lactic-co-glycolic) acid and biphasic ceramic scaffolds by embedding simvastatin. Clin Oral Investig 2021; 26:2693-2701. [PMID: 34694495 DOI: 10.1007/s00784-021-04240-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES This study evaluated the effect of embedding simvastatin (SIM) on the osteoinductive capacity of PLGA + HA/βTCP scaffolds in stem cells from human exfoliated deciduous teeth (SHED). MATERIALS AND METHODS Scaffolds were produced by PLGA solvent dissolution, addition of HA/βTCP, solvent evaporation, and leaching of sucrose particles to impart porosity. Biphasic ceramic particles (70% HA/30% βTCP) were added to the PLGA in a 1:1 (w:w) ratio. Scaffolds with SIM received 1% (w:w) of this medication. Scaffolds were synthesized in a disc-shape and sterilized by ethylene oxide. The experimental groups were (G1) PLGA + HA/βTCP and (G2) PLGA + HA/βTCP + SIM in non-osteogenic culture medium, while (G3) SHED and (G4) MC3T3-E1 in osteogenic culture medium were the positive control groups. The release profile of SIM from scaffolds was evaluated. DNA quantification assay, alkaline phosphatase activity, osteocalcin and osteonectin proteins, extracellular calcium detection, von Kossa staining, and X-ray microtomography were performed to assess the capacity of scaffolds to induce the osteogenic differentiation of SHED. RESULTS The release profile of SIM followed a non-liner sustained-release rate, reaching about 40% of drug release at day 28. Additionally, G2 promoted the highest osteogenic differentiation of SHED, even when compared to the positive control groups. CONCLUSIONS In summary, the osteoinductive capacity of poly(lactic-co-glycolic) acid and biphasic ceramic scaffolds was expressively enhanced by embedding simvastatin. CLINICAL RELEVANCE Bone regeneration is still a limiting factor in the success of several approaches to oral and maxillofacial surgeries, though tissue engineering using mesenchymal stem cells, scaffolds, and osteoinductive mediators might collaborate to this topic.
Collapse
|
3
|
Sordi MB, da Cruz ACC, Aragones Á, Cordeiro MMR, de Souza Magini R. PLGA+HA/βTCP Scaffold Incorporating Simvastatin: A Promising Biomaterial for Bone Tissue Engineering. J ORAL IMPLANTOL 2021; 47:93-101. [PMID: 32699891 DOI: 10.1563/aaid-joi-d-19-00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to synthesize, characterize, and evaluate degradation and biocompatibility of poly(lactic-co-glycolic acid) + hydroxyapatite/β-tricalcium phosphate (PLGA+HA/βTCP) scaffolds incorporating simvastatin (SIM) to verify if this biomaterial might be promising for bone tissue engineering. Samples were obtained by the solvent evaporation technique. Biphasic ceramic particles (70% HA, 30% βTCP) were added to PLGA in a ratio of 1:1. Samples with SIM received 1% (m/m) of this medication. Scaffolds were synthesized in a cylindric shape and sterilized by ethylene oxide. For degradation analysis, samples were immersed in phosphate-buffered saline at 37°C under constant stirring for 7, 14, 21, and 28 days. Nondegraded samples were taken as reference. Mass variation, scanning electron microscopy, porosity analysis, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetry were performed to evaluate physico-chemical properties. Wettability and cytotoxicity tests were conducted to evaluate the biocompatibility. Microscopic images revealed the presence of macro-, meso-, and micropores in the polymer structure with HA/βTCP particles homogeneously dispersed. Chemical and thermal analyses presented similar results for both PLGA+HA/βTCP and PLGA+HA/βTCP+SIM. The incorporation of simvastatin improved the hydrophilicity of scaffolds. Additionally, PLGA+HA/βTCP and PLGA+HA/βTCP+SIM scaffolds were biocompatible for osteoblasts and mesenchymal stem cells. In summary, PLGA+HA/βTCP scaffolds incorporating simvastatin presented adequate structural, chemical, thermal, and biological properties for bone tissue engineering.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Center for Research on Dental Implants, Department of Dentistry, Federal University of Santa Catarina, Santa Catarina, Brazil
| | | | - Águedo Aragones
- Ceramic & Composite Materials Research Laboratories, Department of Mechanical Engineering, Federal University of Santa Catarina, Santa Catarina, Brazil
| | | | | |
Collapse
|
4
|
Jin H, Ji Y, Cui Y, Xu L, Liu H, Wang J. Simvastatin-Incorporated Drug Delivery Systems for Bone Regeneration. ACS Biomater Sci Eng 2021; 7:2177-2191. [PMID: 33877804 DOI: 10.1021/acsbiomaterials.1c00462] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Local drug delivery systems composed of biomaterials and osteogenic substances provide promising strategies for the reconstruction of large bone defects. In recent years, simvastatin has been studied extensively for its pleiotropic effects other than lowering of cholesterol, including its ability to induce osteogenesis and angiogenesis. Accordingly, several studies of simvastatin incorporated drug delivery systems have been performed to demonstrate the feasibility of such systems in enhancing bone regeneration. Therefore, this review explores the molecular mechanisms by which simvastatin affects bone metabolism and angiogenesis. The simvastatin concentrations that promote osteogenic differentiation are analyzed. Furthermore, we summarize and discuss a variety of simvastatin-loaded drug delivery systems that use different loading methods and materials. Finally, current shortcomings of and future development directions for simvastatin-loaded drug delivery systems are summarized. This review provides various advanced design strategies for simvastatin-incorporated drug delivery systems that can enhance bone regeneration.
Collapse
Affiliation(s)
- Hui Jin
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China.,Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Youbo Ji
- Department of Pain, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yutao Cui
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Li Xu
- Department of Orthopedics, Weihai Guanghua Hospital, Weihai 264200, P.R. China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
5
|
Gorabi AM, Kiaie N, Pirro M, Bianconi V, Jamialahmadi T, Sahebkar A. Effects of statins on the biological features of mesenchymal stem cells and therapeutic implications. Heart Fail Rev 2020; 26:1259-1272. [PMID: 32008148 DOI: 10.1007/s10741-020-09929-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Statins are well-known lipid-lowering drugs. The pleiotropic effects of statins have brought about some beneficial effects on improving the therapeutic outcomes of cell therapy and tissue engineering approaches. In this review, the impact of statins on mesenchymal stem cell behaviors including differentiation, apoptosis, proliferation, migration, and angiogenesis, as well as molecular pathways which are responsible for such phenomena, are discussed. A better understanding of pathways and mechanisms of statin-mediated effects on mesenchymal stem cells will pave the way for the expansion of statin applications. Furthermore, since designing a suitable carrier for statins is required to maintain a sufficient dose of active statins at the desired site of the body, different systems for local delivery of statins are also reviewed.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Vanessa Bianconi
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Perugia, Italy
| | - Tannaz Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran. .,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Trombetta RP, Ninomiya MJ, El-Atawneh IM, Knapp EK, de Mesy Bentley KL, Dunman PM, Schwarz EM, Kates SL, Awad HA. Calcium Phosphate Spacers for the Local Delivery of Sitafloxacin and Rifampin to Treat Orthopedic Infections: Efficacy and Proof of Concept in a Mouse Model of Single-Stage Revision of Device-Associated Osteomyelitis. Pharmaceutics 2019; 11:E94. [PMID: 30813284 PMCID: PMC6410209 DOI: 10.3390/pharmaceutics11020094] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/12/2019] [Accepted: 02/17/2019] [Indexed: 12/15/2022] Open
Abstract
Osteomyelitis is a chronic bone infection that is often treated with adjuvant antibiotic-impregnated poly(methyl methacrylate) (PMMA) cement spacers in multi-staged revisions. However, failure rates remain substantial due to recurrence of infection, which is attributed to the poor performance of the PMMA cement as a drug release device. Hence, the objective of this study was to design and evaluate a bioresorbable calcium phosphate scaffold (CaPS) for sustained antimicrobial drug release and investigate its efficacy in a murine model of femoral implant-associated osteomyelitis. Incorporating rifampin and sitafloxacin, which are effective against bacterial phenotypes responsible for bacterial persistence, into 3D-printed CaPS coated with poly(lactic co-glycolic) acid, achieved controlled release for up to two weeks. Implantation into the murine infection model resulted in decreased bacterial colonization rates at 3- and 10-weeks post-revision for the 3D printed CaPS in comparison to gentamicin-laden PMMA. Furthermore, a significant increase in bone formation was observed for 3D printed CaPS incorporated with rifampin at 3 and 10 weeks. The results of this study demonstrate that osteoconductive 3D printed CaPS incorporated with antimicrobials demonstrate more efficacious bacterial colonization outcomes and bone growth in a single-stage revision in comparison to gentamicin-laden PMMA requiring a two-stage revision.
Collapse
Affiliation(s)
- Ryan P Trombetta
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA.
| | - Mark J Ninomiya
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA.
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Ihab M El-Atawneh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA.
| | - Emma K Knapp
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA.
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA.
- Department of Pathology & Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA.
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA.
| | - Edward M Schwarz
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA.
- Department of Pathology & Laboratory Medicine, University of Rochester, Rochester, NY 14642, USA.
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | - Stephen L Kates
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA.
- Department of Orthopaedic Surgery, Virginia Commonwealth University School of Medicine, Richmond, VA 0153, USA.
| | - Hani A Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14642, USA.
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
7
|
Shao PL, Wu SC, Lin ZY, Ho ML, Chen CH, Wang CZ. Alpha-5 Integrin Mediates Simvastatin-Induced Osteogenesis of Bone Marrow Mesenchymal Stem Cells. Int J Mol Sci 2019; 20:ijms20030506. [PMID: 30682874 PMCID: PMC6387019 DOI: 10.3390/ijms20030506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 11/16/2022] Open
Abstract
Simvastatin (SVS) promotes the osteogenic differentiation of mesenchymal stem cells (MSCs) and has been studied for MSC-based bone regeneration. However, the mechanism underlying SVS-induced osteogenesis is not well understood. We hypothesize that α5 integrin mediates SVS-induced osteogenic differentiation. Bone marrow MSCs (BMSCs) derived from BALB/C mice, referred to as D1 cells, were used. Alizarin red S (calcium deposition) and alkaline phosphatase (ALP) staining were used to evaluate SVS-induced osteogenesis of D1 cells. The mRNA expression levels of α5 integrin and osteogenic marker genes (bone morphogenetic protein-2 (BMP-2), runt-related transcription factor 2 (Runx2), collagen type I, ALP and osteocalcin (OC)) were detected using quantitative real-time PCR. Surface-expressed α5 integrin was detected using flow cytometry analysis. Protein expression levels of α5 integrin and phosphorylated focal adhesion kinase (p-FAK), which is downstream of α5 integrin, were detected using Western blotting. siRNA was used to deplete the expression of α5 integrin in D1 cells. The results showed that SVS dose-dependently enhanced the gene expression levels of osteogenic marker genes as well as subsequent ALP activity and calcium deposition in D1 cells. Upregulated p-FAK was accompanied by an increased protein expression level of α5 integrin after SVS treatment. Surface-expressed α5 integrin was also upregulated after SVS treatment. Depletion of α5 integrin expression significantly suppressed SVS-induced osteogenic gene expression levels, ALP activity, and calcium deposition in D1 cells. These results identify a critical role of α5 integrin in SVS-induced osteogenic differentiation of BMSCs, which may suggest a therapeutic strategy to modulate α5 integrin/FAK signaling to promote MSC-based bone regeneration.
Collapse
Affiliation(s)
- Pei-Lin Shao
- Department of Nursing, Asia University, Taichung 413, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University,Taichung 404, Taiwan.
| | - Shun-Cheng Wu
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Zih-Yin Lin
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Mei-Ling Ho
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| | - Chung-Hwan Chen
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung 801, Taiwan.
- Division of Adult Reconstruction Surgery, Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chau-Zen Wang
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|
8
|
Liu L, Tan J, Li B, Xie Q, Sun J, Pu H, Zhang L. Construction of functional pancreatic artificial islet tissue composed of fibroblast-modified polylactic- co-glycolic acid membrane and pancreatic stem cells. J Biomater Appl 2017; 32:362-372. [PMID: 28747082 DOI: 10.1177/0885328217722041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Objective To improve the biocompatibility between polylactic- co-glycolic acid membrane and pancreatic stem cells, rat fibroblasts were used to modify the polylactic- co-glycolic acid membrane. Meanwhile, we constructed artificial islet tissue by compound culturing the pancreatic stem cells and the fibroblast-modified polylactic- co-glycolic acid membrane and explored the function of artificial islets in diabetic nude mice. Methods Pancreatic stem cells were cultured on the fibroblast-modified polylactic- co-glycolic acid membrane in dulbecco's modified eagle medium containing activin-A, β-catenin, and exendin-4. The differentiated pancreatic stem cells combined with modified polylactic- co-glycolic acid membrane were implanted subcutaneously in diabetic nude mice. The function of artificial islet tissue was explored by detecting blood levels of glucose and insulin in diabetic nude mice. Moreover, the proliferation and differentiation of pancreatic stem cells on modified polylactic- co-glycolic acid membrane as well as the changes on the tissue structure of artificial islets were investigated by immunofluorescence and haematoxylin and eosin staining. Results The pancreatic stem cells differentiated into islet-like cells and secreted insulin when cultured on fibroblast-modified polylactic- co-glycolic acid membrane. Furthermore, when the artificial islet tissues were implanted into diabetic nude mice, the pancreatic stem cells combined with polylactic- co-glycolic acid membrane modified by fibroblasts proliferated, differentiated, and secreted insulin to reduce blood glucose levels in diabetic nude mice. Conclusion Pancreatic stem cells can be induced to differentiate into islet-like cells in vitro. In vivo, the artificial islet tissue can effectively regulate the blood glucose level in nude mice within a short period. However, as time increased, the structure of the artificial islets was destroyed due to the erosion of blood cells that resulted in the gradual loss of artificial islet function.
Collapse
Affiliation(s)
- Liping Liu
- 1 School of Chemical Engineering, Shanxi Datong University, Datong, Shanxi, China
| | - Jing Tan
- 2 Institute of Applied Biotechnology, Shanxi Datong University, Datong, Shanxi, China
| | - Baoyuan Li
- 2 Institute of Applied Biotechnology, Shanxi Datong University, Datong, Shanxi, China
| | - Qian Xie
- 3 School of Life Science, Shanxi Datong University, Datong, Shanxi, China
| | - Junwen Sun
- 3 School of Life Science, Shanxi Datong University, Datong, Shanxi, China
| | - Hongli Pu
- 3 School of Life Science, Shanxi Datong University, Datong, Shanxi, China
| | - Li Zhang
- 3 School of Life Science, Shanxi Datong University, Datong, Shanxi, China
| |
Collapse
|