1
|
Strelova MS, Danilovtseva EN, Zelinskiy SN, Pal'shin VA, Annenkov VV. Biomimetic Calcium Phosphate Nanoparticles: Biomineralization Models and Precursors for Composite Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39140326 DOI: 10.1021/acs.langmuir.4c01576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The formation of calcium phosphate under the control of water-soluble polymers is important for understanding bone growth in living organisms. These experiments also have spin-offs in the creation of composite materials, including for regenerative medicine applications. The formation of calcium phosphate (hydroxyapatite) from calcium chloride and diammonium phosphate was studied in the presence of polymers containing carboxyl, amine, and imidazole groups. Depending on the polymer composition, solid products and stable dispersions of positively or negatively charged nanoparticles were obtained. Oppositely charged nanoparticles can interact with each other to form a macroporous composite material, which holds promise as a filler for bone defects. The formation of a calcium phosphate layer around a living cell (dinoflagellate Gymnodinium corollarium A. M. Sundström, Kremp et Daugbjerg) using positive composite nanoparticles is a one-step approach to cell mineralization.
Collapse
Affiliation(s)
- Mariya S Strelova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| | - Elena N Danilovtseva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| | - Stanislav N Zelinskiy
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| | - Viktor A Pal'shin
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| | - Vadim V Annenkov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, Ulan-Batorskaya Strasse, 3, Irkutsk 664033, Russia
| |
Collapse
|
2
|
Dorozhkin SV. Calcium Orthophosphate (CaPO4)-Based Bioceramics: Preparation, Properties, and Applications. COATINGS 2022; 12:1380. [DOI: 10.3390/coatings12101380] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Various types of materials have been traditionally used to restore damaged bones. In the late 1960s, a strong interest was raised in studying ceramics as potential bone grafts due to their biomechanical properties. A short time later, such synthetic biomaterials were called bioceramics. Bioceramics can be prepared from diverse inorganic substances, but this review is limited to calcium orthophosphate (CaPO4)-based formulations only, due to its chemical similarity to mammalian bones and teeth. During the past 50 years, there have been a number of important achievements in this field. Namely, after the initial development of bioceramics that was just tolerated in the physiological environment, an emphasis was shifted towards the formulations able to form direct chemical bonds with the adjacent bones. Afterwards, by the structural and compositional controls, it became possible to choose whether the CaPO4-based implants would remain biologically stable once incorporated into the skeletal structure or whether they would be resorbed over time. At the turn of the millennium, a new concept of regenerative bioceramics was developed, and such formulations became an integrated part of the tissue engineering approach. Now, CaPO4-based scaffolds are designed to induce bone formation and vascularization. These scaffolds are usually porous and harbor various biomolecules and/or cells. Therefore, current biomedical applications of CaPO4-based bioceramics include artificial bone grafts, bone augmentations, maxillofacial reconstruction, spinal fusion, and periodontal disease repairs, as well as bone fillers after tumor surgery. Prospective future applications comprise drug delivery and tissue engineering purposes because CaPO4 appear to be promising carriers of growth factors, bioactive peptides, and various types of cells.
Collapse
|
3
|
Zhang Y, Shu T, Wang S, Liu Z, Cheng Y, Li A, Pei D. The Osteoinductivity of Calcium Phosphate-Based Biomaterials: A Tight Interaction With Bone Healing. Front Bioeng Biotechnol 2022; 10:911180. [PMID: 35651546 PMCID: PMC9149242 DOI: 10.3389/fbioe.2022.911180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Calcium phosphate (CaP)-based bioceramics are the most widely used synthetic biomaterials for reconstructing damaged bone. Accompanied by bone healing process, implanted materials are gradually degraded while bone ultimately returns to its original geometry and function. In this progress report, we reviewed the complex and tight relationship between the bone healing response and CaP-based biomaterials, with the emphasis on the in vivo degradation mechanisms of such material and their osteoinductive properties mediated by immune responses, osteoclastogenesis and osteoblasts. A deep understanding of the interaction between biological healing process and biomaterials will optimize the design of CaP-based biomaterials, and further translate into effective strategies for biomaterials customization.
Collapse
Affiliation(s)
- Yuchen Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Tianyu Shu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Silin Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhongbo Liu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Yilong Cheng
- School of Chemistry, Xi’an Jiaotong University, Xi’an, China
| | - Ang Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| | - Dandan Pei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ang Li, ; Dandan Pei,
| |
Collapse
|
4
|
Munir MU, Salman S, Javed I, Bukhari SNA, Ahmad N, Shad NA, Aziz F. Nano-hydroxyapatite as a delivery system: overview and advancements. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:717-727. [PMID: 34907839 DOI: 10.1080/21691401.2021.2016785] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nano-hydroxyapatite is being investigated as vital components of implants and dental and tissue engineering devices. It is found as a bone replacement due to its non-toxicity and cytocompatibility with dental tissues and bone. The reality that nanocrystalline hydroxyapatite can be made of porous granules and scaffolds. Additionally, it has a massive loading potential indicating its use as a transporter for drugs or a regulated drug release mechanism in pharmaceutical research. This review aims to present existing nano-hydroxyapatite research developments as a drug carrier employed in bone tissue disorders locally and deliver poorly soluble drugs with reduced bioavailability. We have discussed the nano-hydroxyapatite role in the delivery of drugs (i.e. anti-resorptive, anti-cancer, and antibiotics), proteins, genetic material, and radionuclides.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Sajal Salman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Australia
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Naveed Akhter Shad
- National Institute of Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Farooq Aziz
- Department of Physics, University of Sahiwal, Sahiwal, Pakistan
| |
Collapse
|
5
|
Bioactive Calcium Phosphate-Based Composites for Bone Regeneration. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5090227] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Calcium phosphates (CaPs) are widely accepted biomaterials able to promote the regeneration of bone tissue. However, the regeneration of critical-sized bone defects has been considered challenging, and the development of bioceramics exhibiting enhanced bioactivity, bioresorbability and mechanical performance is highly demanded. In this respect, the tuning of their chemical composition, crystal size and morphology have been the matter of intense research in the last decades, including the preparation of composites. The development of effective bioceramic composite scaffolds relies on effective manufacturing techniques able to control the final multi-scale porosity of the devices, relevant to ensure osteointegration and bio-competent mechanical performance. In this context, the present work provides an overview about the reported strategies to develop and optimize bioceramics, while also highlighting future perspectives in the development of bioactive ceramic composites for bone tissue regeneration.
Collapse
|
6
|
Ruffini A, Sandri M, Dapporto M, Campodoni E, Tampieri A, Sprio S. Nature-Inspired Unconventional Approaches to Develop 3D Bioceramic Scaffolds with Enhanced Regenerative Ability. Biomedicines 2021; 9:916. [PMID: 34440120 PMCID: PMC8389705 DOI: 10.3390/biomedicines9080916] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Material science is a relevant discipline in support of regenerative medicine. Indeed, tissue regeneration requires the use of scaffolds able to guide and sustain the natural cell metabolism towards tissue regrowth. This need is particularly important in musculoskeletal regeneration, such as in the case of diseased bone or osteocartilaginous regions for which calcium phosphate-based scaffolds are considered as the golden solution. However, various technological barriers related to conventional ceramic processing have thus far hampered the achievement of biomimetic and bioactive scaffolds as effective solutions for still unmet clinical needs in orthopaedics. Driven by such highly impacting socioeconomic needs, new nature-inspired approaches promise to make a technological leap forward in the development of advanced biomaterials. The present review illustrates ion-doped apatites as biomimetic materials whose bioactivity resides in their unstable chemical composition and nanocrystallinity, both of which are, however, destroyed by the classical sintering treatment. In the following, recent nature-inspired methods preventing the use of high-temperature treatments, based on (i) chemically hardening bioceramics, (ii) biomineralisation process, and (iii) biomorphic transformations, are illustrated. These methods can generate products with advanced biofunctional properties, particularly biomorphic transformations represent an emerging approach that could pave the way to a technological leap forward in medicine and also in various other application fields.
Collapse
Affiliation(s)
| | | | | | | | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (M.S.); (M.D.); (E.C.)
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, 48018 Faenza, Italy; (A.R.); (M.S.); (M.D.); (E.C.)
| |
Collapse
|
7
|
Petrakova NV, Teterina AY, Mikheeva PV, Akhmedova SA, Kuvshinova EA, Sviridova IK, Sergeeva NS, Smirnov IV, Fedotov AY, Kargin YF, Barinov SM, Komlev VS. In Vitro Study of Octacalcium Phosphate Behavior in Different Model Solutions. ACS OMEGA 2021; 6:7487-7498. [PMID: 33778261 PMCID: PMC7992079 DOI: 10.1021/acsomega.0c06016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 01/26/2021] [Indexed: 06/12/2023]
Abstract
Octacalcium phosphate (OCP), a new-generation bone substitute material, is a considered precursor of the biological bone apatite. The two-layered structure of OCP contains the apatitic and hydrated layers and is intensively involved in ion-exchange surface reactions, which results in OCP hydrolysis to hydroxyapatite and adsorption of ions or molecular groups presented in the environment. During various in vitro procedures, such as biomaterial solubility, additive release studies, or the functionalization technique, several model solutions are applied. The composition of the environmental solution affects the degree and rate of OCP hydrolysis, its surface reactivity, and further in vitro and in vivo properties. The performed study was aimed to track the structural changes of OCP-based materials while treating in the most popular model solutions of pH values 7.2-7.4: simulated body fluid (SBF), Dulbecco's phosphate-buffered saline (DPBS), supersaturated calcification solution (SCS), normal saline (NS), and Dulbecco's modified Eagle's medium (DMEM). Various degrees of OCP hydrolysis and/or precipitate formation were achieved through soaking initial OCP granules in the model solutions. Detailed data of X-ray diffraction, Fourier-transform infrared spectroscopy, atomic emission spectrometry with inductively coupled plasma, and scanning electron microscopy are presented. Cultivation of osteosarcoma cells was implemented on OCP pre-treated in DMEM for 1-28 days. It was shown that NS mostly degraded the OCP structure. DPBS slightly changed the OCP structure during the first treatment term, and during further terms, the crystals got thinner and OCP hydrolysis took place. Treatment in SBF and SCS caused the precipitate formation along with OCP hydrolysis, with a larger contribution of SCS solution to precipitation. Pre-treating in DMEM enhanced the cytocompatibility of materials. As a result, on performing the in vitro procedures, careful selection of the contact solution should be made to avoid the changes in materials structure and properties and get adequate results.
Collapse
Affiliation(s)
- Nataliya V. Petrakova
- Ceramic
Composite Materials, A.A. Baikov Institute
of Metallurgy and Materials Science RAS, Leninskiy Prospect 49, Moscow 119334, Russia
| | - Anastasia Yu. Teterina
- Ceramic
Composite Materials, A.A. Baikov Institute
of Metallurgy and Materials Science RAS, Leninskiy Prospect 49, Moscow 119334, Russia
| | - Polina V. Mikheeva
- Ceramic
Composite Materials, A.A. Baikov Institute
of Metallurgy and Materials Science RAS, Leninskiy Prospect 49, Moscow 119334, Russia
| | - Suraya A. Akhmedova
- Forecast
Lab, P.A. Herzen Moscow Research Oncology
Institute−Branch of FSBI NMRRC of the Ministry of Health of
Russia, The 2-nd Botkinskiy
pr, 3, Moscow 125284, Russia
| | - Ekaterina A. Kuvshinova
- Forecast
Lab, P.A. Herzen Moscow Research Oncology
Institute−Branch of FSBI NMRRC of the Ministry of Health of
Russia, The 2-nd Botkinskiy
pr, 3, Moscow 125284, Russia
| | - Irina K. Sviridova
- Forecast
Lab, P.A. Herzen Moscow Research Oncology
Institute−Branch of FSBI NMRRC of the Ministry of Health of
Russia, The 2-nd Botkinskiy
pr, 3, Moscow 125284, Russia
| | - Natalya S. Sergeeva
- Forecast
Lab, P.A. Herzen Moscow Research Oncology
Institute−Branch of FSBI NMRRC of the Ministry of Health of
Russia, The 2-nd Botkinskiy
pr, 3, Moscow 125284, Russia
| | - Igor V. Smirnov
- Ceramic
Composite Materials, A.A. Baikov Institute
of Metallurgy and Materials Science RAS, Leninskiy Prospect 49, Moscow 119334, Russia
| | - Alexander Yu. Fedotov
- Ceramic
Composite Materials, A.A. Baikov Institute
of Metallurgy and Materials Science RAS, Leninskiy Prospect 49, Moscow 119334, Russia
| | - Yuriy F. Kargin
- Ceramic
Composite Materials, A.A. Baikov Institute
of Metallurgy and Materials Science RAS, Leninskiy Prospect 49, Moscow 119334, Russia
| | - Sergey M. Barinov
- Ceramic
Composite Materials, A.A. Baikov Institute
of Metallurgy and Materials Science RAS, Leninskiy Prospect 49, Moscow 119334, Russia
| | - Vladimir S. Komlev
- Ceramic
Composite Materials, A.A. Baikov Institute
of Metallurgy and Materials Science RAS, Leninskiy Prospect 49, Moscow 119334, Russia
| |
Collapse
|
8
|
Biological Factors, Metals, and Biomaterials Regulating Osteogenesis through Autophagy. Int J Mol Sci 2020; 21:ijms21082789. [PMID: 32316424 PMCID: PMC7215394 DOI: 10.3390/ijms21082789] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 01/18/2023] Open
Abstract
Bone loss raises great concern in numerous situations, such as ageing and many diseases and in both orthopedic and dentistry fields of application, with an extensive impact on health care. Therefore, it is crucial to understand the mechanisms and the determinants that can regulate osteogenesis and ensure bone balance. Autophagy is a well conserved lysosomal degradation pathway, which is known to be highly active during differentiation and development. This review provides a revision of the literature on all the exogen factors that can modulate osteogenesis through autophagy regulation. Metal ion exposition, mechanical stimuli, and biological factors, including hormones, nutrients, and metabolic conditions, were taken into consideration for their ability to tune osteogenic differentiation through autophagy. In addition, an exhaustive overview of biomaterials, both for orthopedic and dentistry applications, enhancing osteogenesis by modulation of the autophagic process is provided as well. Already investigated conditions regulating bone regeneration via autophagy need to be better understood for finely tailoring innovative therapeutic treatments and designing novel biomaterials.
Collapse
|
9
|
Levingstone TJ, Herbaj S, Dunne NJ. Calcium Phosphate Nanoparticles for Therapeutic Applications in Bone Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1570. [PMID: 31698700 PMCID: PMC6915504 DOI: 10.3390/nano9111570] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/19/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023]
Abstract
Bone injuries and diseases constitute a burden both socially and economically, as the consequences of a lack of effective treatments affect both the patients' quality of life and the costs on the health systems. This impended need has led the research community's efforts to establish efficacious bone tissue engineering solutions. There has been a recent focus on the use of biomaterial-based nanoparticles for the delivery of therapeutic factors. Among the biomaterials being considered to date, calcium phosphates have emerged as one of the most promising materials for bone repair applications due to their osteoconductivity, osteoinductivity and their ability to be resorbed in the body. Calcium phosphate nanoparticles have received particular attention as non-viral vectors for gene therapy, as factors such as plasmid DNAs, microRNAs (miRNA) and silencing RNA (siRNAs) can be easily incorporated on their surface. Calcium phosphate nanoparticles loaded with therapeutic factors have also been delivered to the site of bone injury using scaffolds and hydrogels. This review provides an extensive overview of the current state-of-the-art relating to the design and synthesis of calcium phosphate nanoparticles as carriers for therapeutic factors, the mechanisms of therapeutic factors' loading and release, and their application in bone tissue engineering.
Collapse
Affiliation(s)
- Tanya J. Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 9, Ireland
| | - Simona Herbaj
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
| | - Nicholas J. Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland; (T.J.L.); (S.H.)
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Stokes Building, Collins Avenue, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 9, Ireland
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
10
|
Icriverzi M, Bonciu A, Rusen L, Sima LE, Brajnicov S, Cimpean A, Evans RW, Dinca V, Roseanu A. Human Mesenchymal Stem Cell Response to Lactoferrin-based Composite Coatings. MATERIALS 2019; 12:ma12203414. [PMID: 31635291 PMCID: PMC6829495 DOI: 10.3390/ma12203414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/30/2019] [Accepted: 10/16/2019] [Indexed: 12/29/2022]
Abstract
The potential of mesenchymal stem cells (MSCs) for implantology and cell-based therapy represents one of the major ongoing research subjects within the last decades. In bone regeneration applications, the various environmental factors including bioactive compounds such as growth factors, chemicals and physical characteristics of biointerfaces are the key factors in controlling and regulating osteogenic differentiation from MSCs. In our study, we have investigated the influence of Lactoferrin (Lf) and Hydroxyapatite (HA) embedded within a biodegradable PEG-PCL copolymer on the osteogenic fate of MSCs, previous studies revealing an anti-inflammatory potential of the coating and osteogenic differentiation of murine pre-osteoblast cells. The copolymer matrix was obtained by the Matrix Assisted Pulsed Laser Evaporation technique (MAPLE) and the composite layers containing the bioactive compounds (Lf, HA, and Lf-HA) were characterised by Scanning Electron Microscopy and Atomic Force Microscopy. Energy-dispersive X-ray spectroscopy contact angle and surface energy of the analysed coatings were also measured. The characteristics of the composite surfaces were correlated with the viability, proliferation, and morphology of human MSCs (hMSCs) cultured on the developed coatings. All surfaces were found not to exhibit toxicity, as confirmed by the LIVE/DEAD assay. The Lf-HA composite exhibited an increase in osteogenic differentiation of hMSCs, results supported by alkaline phosphatase and mineralisation assays. This is the first report of the capacity of biodegradable composite layers containing Lf to induce osteogenic differentiation from hMSCs, a property revealing its potential for application in bone regeneration.
Collapse
Affiliation(s)
- Madalina Icriverzi
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania.
- Department of Biochemistry and Molecular Biology, University of Bucharest, Faculty of Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Anca Bonciu
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, 077125 Magurele, Romania.
- Faculty of Physics, University of Bucharest, RO-077125 Magurele, Romania.
| | - Laurentiu Rusen
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, 077125 Magurele, Romania.
| | - Livia Elena Sima
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania.
| | - Simona Brajnicov
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, 077125 Magurele, Romania.
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, Faculty of Biology, 91-95 Splaiul Independentei, 050095 Bucharest, Romania.
| | - Robert W Evans
- School of Engineering and Design, Brunel University, London UB8 3PH, UK.
| | - Valentina Dinca
- National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, 077125 Magurele, Romania.
| | - Anca Roseanu
- Institute of Biochemistry of the Romanian Academy, 060031 Bucharest, Romania.
| |
Collapse
|
11
|
Forte L, Sarda S, Torricelli P, Combes C, Brouillet F, Marsan O, Salamanna F, Fini M, Boanini E, Bigi A. Multifunctionalization Modulates Hydroxyapatite Surface Interaction with Bisphosphonate: Antiosteoporotic and Antioxidative Stress Materials. ACS Biomater Sci Eng 2019; 5:3429-3439. [DOI: 10.1021/acsbiomaterials.9b00795] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lucia Forte
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Stéphanie Sarda
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Paola Torricelli
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Fabien Brouillet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Faculté des Sciences Pharmaceutique, 35 Chemin des Maraichers, 31062 Toulouse cedex 9, France
| | - Olivier Marsan
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, Toulouse INP ENSIACET, 4 allée Emile Monso, 31030 Toulouse cedex 4, France
| | - Francesca Salamanna
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Milena Fini
- Laboratory of Preclinical and Surgical Studies, IRCCS Rizzoli Orthopaedic Institute, via di Barbiano 1/10 40136 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | - Adriana Bigi
- Department of Chemistry “G. Ciamician”, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
12
|
Functionalization of Ceramic Coatings for Enhancing Integration in Osteoporotic Bone: A Systematic Review. COATINGS 2019. [DOI: 10.3390/coatings9050312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: The success of reconstructive orthopaedic surgery strongly depends on the mechanical and biological integration between the prosthesis and the host bone tissue. Progressive population ageing with increased frequency of altered bone metabolism conditions requires new strategies for ensuring an early implant fixation and long-term stability. Ceramic materials and ceramic-based coatings, owing to the release of calcium phosphate and to the precipitation of a biological apatite at the bone-implant interface, are able to promote a strong bonding between the host bone and the implant. Methods: The aim of the present systematic review is the analysis of the existing literature on the functionalization strategies for improving the implant osteointegration in osteoporotic bone and their relative translation into the clinical practice. The review process, conducted on two electronic databases, identified 47 eligible preclinical studies and 5 clinical trials. Results: Preclinical data analysis showed that functionalization with both organic and inorganic molecules usually improves osseointegration in the osteoporotic condition, assessed mainly in rodent models. Clinical studies, mainly retrospective, have tested no functionalization strategies. Registered trademarks materials have been investigated and there is lack of information about the micro- or nano- topography of ceramics. Conclusions: Ceramic materials/coatings functionalization obtained promising results in improving implant osseointegration even in osteoporotic conditions but preclinical evidence has not been fully translated to clinical applications.
Collapse
|
13
|
Boanini E, Gazzano M, Nervi C, Chierotti MR, Rubini K, Gobetto R, Bigi A. Strontium and Zinc Substitution in β-Tricalcium Phosphate: An X-ray Diffraction, Solid State NMR and ATR-FTIR Study. J Funct Biomater 2019; 10:jfb10020020. [PMID: 31060308 PMCID: PMC6616520 DOI: 10.3390/jfb10020020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/10/2019] [Accepted: 04/28/2019] [Indexed: 01/15/2023] Open
Abstract
β-tricalcium phosphate (β-TCP) is one of the most common bioceramics, widely applied in bone cements and implants. Herein we synthesized β-TCP by solid state reaction in the presence of increasing amounts of two biologically active ions, namely strontium and zinc, in order to clarify the structural modifications induced by ionic substitution. The results of X-ray diffraction analysis indicate that zinc can substitute for calcium into a β-TCP structure up to about 10 at% inducing a reduction of the cell parameters, whereas the substitution occurs up to about 80 at% in the case of strontium, which provokes a linear increase of the lattice constants, and a slight modification into a more symmetric structure. Rietveld refinements and solid-state 31P NMR spectra demonstrate that the octahedral Ca(5) is the site of β-TCP preferred by the small zinc ion. ATR-FTIR results indicate that zinc substitution provokes a disorder of β-TCP structure. At variance with the behavior of zinc, strontium completely avoids Ca(5) site even at high concentration, whereas it exhibits a clear preference for Ca(4) site. The infrared absorption bands of β-TCP show a general shift towards lower wavenumbers on increasing strontium content. Particularly significant is the shift of the infrared symmetric stretching band at 943 cm−1 due to P(1), that is the phosphate more involved in Ca(4) coordination, which further supports the occupancy preference of strontium.
Collapse
Affiliation(s)
- Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | | | - Carlo Nervi
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Michele R Chierotti
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Katia Rubini
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| | - Roberto Gobetto
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Adriana Bigi
- Department of Chemistry "Giacomo Ciamician", Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
14
|
Role of Aspartic and Polyaspartic Acid on the Synthesis and Hydrolysis of Brushite. J Funct Biomater 2019; 10:jfb10010011. [PMID: 30717259 PMCID: PMC6463188 DOI: 10.3390/jfb10010011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 11/25/2022] Open
Abstract
Dicalcium phosphate dihydrate (DCPD) is one of the mineral phases indicated as possible precursors of biological apatites and it is widely employed in the preparation of calcium phosphate bone cements. Herein, we investigated the possibility to functionalize DCPD with aspartic acid (ASP) and poly-aspartic acid (PASP), as models of the acidic macromolecules of biomineralized tissues, and studied their influence on DCPD hydrolysis. To this aim, the synthesis of DCPD was performed in aqueous solution in the presence of increasing concentrations of PASP and ASP, whereas the hydrolysis reaction was carried out in physiological solution up to three days. The results indicate that it is possible to prepare DCPD functionalized with PASP up to a polyelectrolyte content of about 2.3 wt%. The increase of PASP content induces crystal aggregation, reduction of the yield of the reaction and of the thermal stability of the synthesized DCPD. Moreover, DCPD samples functionalized with PASP display a slower hydrolysis than pure DCPD. On the other hand, in the explored range of concentrations (up to 10 mM) ASP is not incorporated into DCPD and does not influence its crystallization nor its hydrolysis. At variance, when present in the hydrolysis solution, ASP, and even more PASP, delays the conversion into the more stable phases, octacalcium phosphate and/or hydroxyapatite. The greater influence of PASP on the synthesis and hydrolysis of DCPD can be ascribed to the cooperative action of the carboxylate groups and to its good fit with DCPD structure.
Collapse
|
15
|
Boanini E, Cassani MC, Rubini K, Boga C, Bigi A. ( 9R)-9-Hydroxystearate-Functionalized Anticancer Ceramics Promote Loading of Silver Nanoparticles. NANOMATERIALS 2018; 8:nano8060390. [PMID: 29857541 PMCID: PMC6027231 DOI: 10.3390/nano8060390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
Abstract
Functionalization of calcium phosphates for biomedical applications has been proposed as a strategy to enrich the good osteoinductive properties of these materials with specific therapeutic characteristics. Herein, we prepared and characterized hydroxyapatite nanocrystals functionalized with an anticancer agent, (9R)-9-hydroxystearate (HSA), and loaded with an antimicrobial agent, namely silver nanoparticles (AgNPs). Nanocrystals at two different contents of HSA, about 4 and 9 wt %, were prepared via direct synthesis in aqueous solution. Loading with the antibacterial agent was achieved through interaction with different volumes of AgNPs suspensions. The amount of loaded nanoparticles increases with the volume of the AgNPs suspension and with the hydroxystearate content of the nanocrystals, up to about 3.3 wt %. The structural, morphological, and hydrophobic properties of the composite materials depend on hydroxystearate content, whereas they are not affected by AgNPs loading. At variance, the values of zeta potential slightly increase with the content of AgNPs, which exhibit a sustained release in cell culture medium.
Collapse
Affiliation(s)
- Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via Selmi, 2, 40126 Bologna, Italy.
| | - Maria Cristina Cassani
- Department of Industrial Chemistry "Toso Montanari", Via del Risorgimento, 4, 40136 Bologna, Italy.
| | - Katia Rubini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via Selmi, 2, 40126 Bologna, Italy.
| | - Carla Boga
- Department of Industrial Chemistry "Toso Montanari", Via del Risorgimento, 4, 40136 Bologna, Italy.
| | - Adriana Bigi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, via Selmi, 2, 40126 Bologna, Italy.
| |
Collapse
|
16
|
Bigi A, Boanini E. Calcium Phosphates as Delivery Systems for Bisphosphonates. J Funct Biomater 2018; 9:E6. [PMID: 29342839 PMCID: PMC5872092 DOI: 10.3390/jfb9010006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Bisphosphonates (BPs) are the most utilized drugs for the treatment of osteoporosis, and are usefully employed also for other pathologies characterized by abnormally high bone resorption, including bone metastases. Due to the great affinity of these drugs for calcium ions, calcium phosphates are ideal delivery systems for local administration of BPs to bone, which is aimed to avoid/limit the undesirable side effects of their prolonged systemic use. Direct synthesis in aqueous medium and chemisorptions from solution are the two main routes proposed to synthesize BP functionalized calcium phosphates. The present review overviews the information acquired through the studies on the interaction between bisphosphonate molecules and calcium phosphates. Moreover, particular attention is addressed to some important recent achievements on the applications of BP functionalized calcium phosphates as biomaterials for bone substitution/repair.
Collapse
Affiliation(s)
- Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| | - Elisa Boanini
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|