1
|
Baeza-Morales A, Medina-García M, Martínez-Peinado P, Pascual-García S, Pujalte-Satorre C, López-Jaén AB, Martínez-Espinosa RM, Sempere-Ortells JM. The Antitumour Mechanisms of Carotenoids: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1060. [PMID: 39334719 PMCID: PMC11428676 DOI: 10.3390/antiox13091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Carotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing apoptosis, inhibiting cell cycle progression and preventing metastasis by affecting oncogenic and tumour suppressor proteins. The review also explores the pro-oxidant function of carotenoids within cancer cells. In fact, although their overall contribution to cellular antioxidant defences is well known and significant, some carotenoids can exhibit pro-oxidant effects under certain conditions and are able to elevate reactive oxygen species (ROS) levels in tumoural cells, triggering mitochondrial pathways that would lead to cell death. The final balance between their antioxidant and pro-oxidant activities depends on several factors, including the specific carotenoid, its concentration and the redox environment of the cell. Clinical trials are discussed, highlighting the conflicting results of carotenoids in cancer treatment and the importance of personalized approaches. Emerging research on rare carotenoids like bacterioruberin showcases their superior antioxidant capacity and selective cytotoxicity against aggressive cancer subtypes, such as triple-negative breast cancer. Future directions include innovative delivery systems, novel combinations and personalized treatments, aiming to enhance the therapeutic potential of carotenoids. This review highlights the promising yet complex landscape of carotenoid-based cancer therapies, calling for continued research and clinical exploration.
Collapse
Affiliation(s)
- Andrés Baeza-Morales
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Miguel Medina-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Pascual Martínez-Peinado
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Sandra Pascual-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Carolina Pujalte-Satorre
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Ana Belén López-Jaén
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - José Miguel Sempere-Ortells
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| |
Collapse
|
2
|
Harihar S, Welch DR. KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers? Cancer Metastasis Rev 2023; 42:183-196. [PMID: 36720764 PMCID: PMC10103016 DOI: 10.1007/s10555-023-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Present therapeutic approaches do not effectively target metastatic cancers, often limited by their inability to eliminate already-seeded non-proliferative, growth-arrested, or therapy-resistant tumor cells. Devising effective approaches targeting dormant tumor cells has been a focus of cancer clinicians for decades. However, progress has been limited due to limited understanding of the tumor dormancy process. Studies on tumor dormancy have picked up pace and have resulted in the identification of several regulators. This review focuses on KISS1, a metastasis suppressor gene that suppresses metastasis by keeping tumor cells in a state of dormancy at ectopic sites. The review explores mechanistic insights of KISS1 and discusses its potential application as a therapeutic against metastatic cancers by eliminating quiescent cells or inducing long-term dormancy in tumor cells.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Danny R. Welch
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, USA
- The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Blvd. Kansas City, Kansas City, KS 66160, USA
| |
Collapse
|
3
|
Yang L, Lin F, Gao Z, Chen X, Zhang H, Dong K. Anti-tumor peptide SA12 inhibits metastasis of MDA-MB-231 and MCF-7 breast cancer cells via increasing expression of the tumor metastasis suppressor genes, CDH1, nm23-H1 and BRMS1. Exp Ther Med 2020; 20:1758-1763. [PMID: 32742405 DOI: 10.3892/etm.2020.8886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
In recent years, there has been progress in the treatment of breast cancer; however, the prognosis is still poor due to recurrence and metastasis following conventional treatment. The anti-tumor peptide SA12 has been demonstrated to inhibit proliferation and arrest the cell cycle in MDA-MB-231 and MCF-7 breast cancer cells. In the present study, whether SA12 was able to inhibit the metastasis of breast cancer cells was investigated. Wound healing and Transwell assays were used to investigate the inhibition of SA12 on cell migration while, reverse transcription-quantitative PCR and western blot assays were used to identify the mechanism of action behind the effects of SA12 on cell migration. Results from the wound healing and Transwell assays revealed that SA12 significantly inhibited the migration of MDA-MB-231 and MCF-7 breast cancer cells following treatment with 100 µM SA12. Compared with that in the controls, the mRNA expression levels of cadherin 1 (CDH1), non-metastasis 23-H1 (nm23-H1) and breast cancer metastasis suppressor 1 (BRMS1) were increased in MDA-MB-231 and MCF-7 cells following treatment with 100 µM SA12. Furthermore, the protein expression levels of E-cadherin, NM23A and BRMS1 were also increased in MDA-MB-231 cells and MCF-7 cells following treatment with 100 µM SA12. In conclusion, SA12 inhibited the migration of MDA-MB-231 and MCF-7 breast cancer cells and enhanced the expression of the tumor metastasis suppressor genes, CDH1, nm23-H1 and BRMS1, which may be responsible for the SA12-induced inhibition of breast cancer cell metastasis.
Collapse
Affiliation(s)
- Longfei Yang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Fang Lin
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhaowei Gao
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xi Chen
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Huizhong Zhang
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ke Dong
- Department of Medical Laboratory and Research Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
4
|
Krishna Latha T, Verma A, Thakur GK, Banerjee B, Kaur N, Singh UR, Sharma S. Down Regulation of KAI1/CD82 in Lymph Node Positive and Advanced T-Stage Group in Breast Cancer Patients. Asian Pac J Cancer Prev 2019; 20:3321-3329. [PMID: 31759355 PMCID: PMC7063004 DOI: 10.31557/apjcp.2019.20.11.3321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Metastasis represents a deadly aspect of any cancer including breast cancer, given its high prevalence; treatment of metastatic breast cancer remains a clinically unmet need, which necessitates the exploration of metastasis suppressor genes (MSGs). KAI-1/CD82 is an important member of MSGs; the role of KAI1 has been well explored in prostate cancer, however its role in breast cancer is not fully explored and in fact the results of breast cancer studies are contentious. Thus, the present study aimed to investigate expression of KAI1 at both transcriptional and translational levels in the tissue of breast cancer patients and benign breast disease. Further, we analysed the relationship between expression levels of KAI1 and clinicopathological parameters in breast cancer patients. MATERIALS AND METHODS mRNA expression was studied by Real time PCR and protein expression was analyzed by both Western blot and Immunohistochemistry. RESULTS The results of the study indicate that KAI1 expression was remarkably decreased in breast cancer both at the gene and the protein levels (P < 0.05) compared to benign breast disease. In addition, KAI1 expression levels were strongly associated with axillary lymph node status and advanced T stage (p < 0.05), however no association was found with tumor grade, age, menopausal status and receptor status like ER, PR and Her2. CONCLUSION Low expression of KAI1 might be helpful for predicting the lymph node metastasis and T staging, thus predicts malignant prognosis of breast cancer.<br />.
Collapse
Affiliation(s)
- Thammineni Krishna Latha
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Ankur Verma
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Gaurav Kumar Thakur
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Basudev Banerjee
- Department of Biochemistry University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Navneet Kaur
- Department of Surgery, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Usha Rani Singh
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences and GTB Hospital , University of Delhi, Dilshad Garden, Delhi, India
| |
Collapse
|
5
|
Thivyah Prabha A, Sekar D. Deciphering the molecular signaling pathways in breast cancer pathogenesis and their role in diagnostic and treatment modalities. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Abstract
Breast cancer metastasis suppressor gene-1 (BRMS1) is newly discovered tumor metastasis gene, which has been reported to play an important role in the progression of human tumor. However, its role in rectal cancer has never been investigated. In this present study, we evaluated the associated of BRMS1 with colorectal cancer, its value in prognosis, and its role in metastasis of rectal cancer. BRMS1 expression examined in 80 patients and the role of BRMS1 in metastasis was studied using mice model. Our results showed that BRMS1 expression was significantly associated with clinicopathological parameters in rectal cancer patients and overexpression of BRMS1 in rectal cancer xenograft led to decreased growth, invasiveness and metastasis. Our findings indicate that high expression of BRSM1 in rectal cancer plays an essential role in tumor progression.
Collapse
|
7
|
Bi Q, Ranjan A, Fan R, Agarwal N, Welch DR, Weinman SA, Ding J, Iwakuma T. MTBP inhibits migration and metastasis of hepatocellular carcinoma. Clin Exp Metastasis 2015; 32:301-11. [PMID: 25759210 DOI: 10.1007/s10585-015-9706-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/07/2015] [Indexed: 01/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide with increasing incidence. Despite curative surgical resection and advanced chemotherapy, its survival rate remains low. The presence of microvascular invasion and occult metastasis is one of the major causes for this poor outcome. MDM2 Binding Protein (MTBP) has been implicated in the suppression of cell migration and cancer metastasis. However, clinical significance of MTBP, particularly in human cancer, is poorly understood. Specifically, clinical relevance of MTBP in human HCC has never been investigated. Here we demonstrated that expression of MTBP was significantly reduced in human HCC tissues compared to adjacent non-tumor tissues. MTBP expression was negatively correlated with capsular/vascular invasion and lymph node metastasis. Overexpression of MTBP resulted in the suppression of the migratory and metastatic potential of HCC cells, while its downregulation increased the migration. Consistent with the previous report, MTBP endogenously bound to alpha-actinin 4 (ACTN4) and suppressed ACTN4-mediated cell migration in multiple HCC cell lines. However, MTBP also inhibited migratory potential of PLC/PRF/5 HCC cells whose migration was not altered by manipulation of ACTN4 expression. These results suggest that mechanisms behind MTBP-mediated migration suppression may not be limited to the pathway involving ACTN4 in certain cellular contexts. Additionally, as a potential mechanism for reduced MTBP expression in tumors, we found that MTBP expression was increased following the treatment with histone deacetylase inhibitors (HDIs). Our study, for the first time, provides clinical relevance of MTBP in the suppression of HCC metastasis.
Collapse
Affiliation(s)
- Qian Bi
- Diagnosis and Treatment Center for Liver Cirrhosis, 302 Military Hospital of China, Beijing, 10039, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mei P, Bai J, Shi M, Liu Q, Li Z, Fan Y, Zheng J. BRMS1 suppresses glioma progression by regulating invasion, migration and adhesion of glioma cells. PLoS One 2014; 9:e98544. [PMID: 24879377 PMCID: PMC4039505 DOI: 10.1371/journal.pone.0098544] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/05/2014] [Indexed: 11/21/2022] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is a metastasis suppressor gene in several solid tumors. However, the expression and function of BRMS1 in glioma have not been reported. In this study, we investigated whether BRMS1 play a role in glioma pathogenesis. Using the tissue microarray technology, we found that BRMS1 expression is significantly decreased in glioma compared with tumor adjacent normal brain tissue (P<0.01, χ2 test) and reduced BRMS1 staining is associated with WHO stages (P<0.05, χ2 test). We also found that BRMS1 was significantly downregulated in glioma cell lines compared to normal human astrocytes (P<0.01, χ2 test). Furthermore, we demonstrated that BRMS1 overexpression inhibited glioma cell invasion by suppressing uPA, NF-κB, MMP-2 expression and MMP-2 enzyme activity. Moreover, our data showed that overexpression of BRMS1 inhibited glioma cell migration and adhesion capacity compared with the control group through the Src-FAK pathway. Taken together, this study suggested that BRMS1 has a role in glioma development and progression by regulating invasion, migration and adhesion activities of cancer cells.
Collapse
Affiliation(s)
- Pengjin Mei
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Jin Bai
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Meilin Shi
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Qinghua Liu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Zhonglin Li
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
| | - Yuechao Fan
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (JZ); (YF)
| | - Junnian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, Jiangsu, China
- Department of Medical Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China
- * E-mail: (JZ); (YF)
| |
Collapse
|
9
|
Abstract
MDM2 binding protein (MTBP) is a protein that interacts with oncoprotein murine double minute (MDM2), a major inhibitor of the tumor suppressor p53. Overexpression of MTBP leads to p53-independent cell proliferation arrest, which is in turn blocked by simultaneous overexpression of MDM2. Importantly, reduced expression of MTBP in mice increases tumor metastasis and enhances migratory potential of mouse embryonic fibroblasts regardless of the presence of p53. Clinically, loss of MTBP expression in head and neck squamous cell carcinoma is associated with reduced patient survival, and is shown to serve as an independent prognostic factor when p53 is mutated in tumors. These results indicate the involvement of MTBP in suppressing tumor progression. Our recent findings demonstrate that overexpression of MTBP in human osteosarcoma cells lacking wild-type p53 inhibits metastasis, but not primary tumor growth, when cells are transplanted in femurs of immunocompromised mice. These data indicate that MTBP functions as a metastasis suppressor independent of p53 status. Furthermore, overexpression of MTBP suppresses cell migration and filopodia formation, in part, by inhibiting function of an actin crosslinking protein α-actinin-4. Thus, increasing evidence indicates the significance of MTBP in tumor progression. We summarize published results related to MTBP function and discuss caveats and future directions in this review article.
Collapse
Affiliation(s)
- Tomoo Iwakuma
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow blvd., Wahl East, Room 2005, Kansas City, KS 66160, USA.
| | | |
Collapse
|
10
|
Podnos A, Clark DA, Erin N, Yu K, Gorczynski RM. Further evidence for a role of tumor CD200 expression in breast cancer metastasis: decreased metastasis in CD200R1KO mice or using CD200-silenced EMT6. Breast Cancer Res Treat 2012; 136:117-27. [PMID: 23053647 DOI: 10.1007/s10549-012-2258-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 09/12/2012] [Indexed: 11/27/2022]
Abstract
Previous studies reported that CD200 expression on cells of the transplantable EMT6 mouse breast cancer line was increased during growth in immunocompetent mice. Low levels of expression persisted in NOD-SCID.IL-2(γr-/-) mice or mice with generalized over-expression of a CD200 transgene (CD200(tg) mice), despite the faster tumor growth in both of these latter strains. We also showed that CD200 expression (by the host and/or tumor cells) led to increased seeding of tumor cells to DLN in immunocompromised (CD200(tg) or NOD-SCID.IL-2(γr-/-)) vs immunocompetent mice, using limiting dilution cloning of tumor cells from DLN (vs contralateral lymph nodes, CLN). Evidence for an important role for CD200 expression in this increased metastasis came from the observation that neutralization of CD200 by anti-CD200mAbs decreased tumor metastasis and increased levels of cytotoxic anti-tumor immune cells in DLN. In the current studies, we have extended these observations by exploring tumor growth/metastasis in CD200R1 KO mice in which we have previously shown, in a transplant model, that expression of CD200 fails to deliver an immunosuppressive signal. In addition, we have studied local and metastatic growth in healthy control mice of EMT6 tumor cells stably transduced with shRNA able to silence CD200 expression. In both scenarios, decreased metastasis was observed, with increased immunity to EMT6 detected by cytotoxicity assays. In addition, adoptive transfer of DLN to control mice attenuated EMT6 metastases implying a potential therapeutic benefit from neutralizing CD200 expression in breast cancer.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Breast Neoplasms/immunology
- Breast Neoplasms/therapy
- Female
- Gene Expression Regulation, Neoplastic/immunology
- Humans
- Immunotherapy
- Interleukin-2/immunology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/immunology
- Mammary Neoplasms, Animal/therapy
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Neoplasm Metastasis/immunology
- Neoplasm Metastasis/pathology
- Neoplasm Metastasis/therapy
Collapse
Affiliation(s)
- Anna Podnos
- University Health Network, Toronto General Hospital, 101 College Street, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
11
|
Abstract
MDM2 Binding Protein (MTBP) has been implicated in cancer progression. Here we demonstrate one mechanism by which MTBP inhibits cancer metastasis. Overexpression of MTBP in human osteosarcoma cell lines lacking wild-type p53 did not alter primary tumor growth in mice but significantly inhibited metastases. MTBP downregulation increased the migratory potential of MDM2−/−p53−/− mouse embryonic fibroblasts, suggesting that MTBP inhibited cell migration independently of the Mdm2-p53 pathway. Co-immunoprecipitation and mass spectrometric analysis identified alpha-actinin-4 (ACTN4) as a MTBP-interacting protein. Endogenous MTBP interacted with and partially colocalized with ACTN4. MTBP overexpression inhibited cell migration and filopodia formation mediated by ACTN4. Increased cell migration by MTBP downregulation was inhibited by concomitant downregulation of ACTN4. MTBP also inhibited ACTN4-mediated F-actin bundling. We furthermore demonstrated that nuclear localization of MTBP was dispensable for inhibiting ACTN4-mediated cell migration and filopodia formation. Thus, MTBP suppresses cell migration, at least partially, by inhibiting ACTN4 function. Our study not only provides a mechanism of metastasis suppression by MTBP, but also suggests MTBP as a potential biomarker for cancer progression.
Collapse
|
12
|
Sheng XJ, Zhou YQ, Song QY, Zhou DM, Liu QC. Loss of breast cancer metastasis suppressor 1 promotes ovarian cancer cell metastasis by increasing chemokine receptor 4 expression. Oncol Rep 2011; 27:1011-8. [PMID: 22200669 PMCID: PMC3583538 DOI: 10.3892/or.2011.1596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/02/2011] [Indexed: 12/22/2022] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is a predominantly nuclear protein that differentially regulates the expression of multiple genes, leading to suppression of metastasis without affecting orthotopic tumor growth. It has been demonstrated that BRMS1 may be correlated with advanced ovarian cancer. The aim of this study was to investigate the mechanisms of BRMS1 involvement in ovarian cancer metastasis. We constructed a plasmid containing a short hairpin RNA (shRNA) against BRMS1 and transfected it into the ovarian cancer cell line OVCAR3. Real-time reverse transcription polymerase chain reaction (real-time PCR) and Western blot analyses demonstrated that BRMS1 expression was efficiently downregulated. Stable suppression of BRMS1 significantly enhanced cell adhesion, migration, invasion and angiogenesis. We also found that chemokine receptor 4 (CXCR4) was upregulated at both the mRNA and protein levels. When approaching for the mechanism, we discovered that activation of the nuclear factor-κB (NF-κB) signaling pathway mediated CXCR4 upregulation, as demonstrated by the electrophoretic mobility shift assay (EMSA). Collectively, these results suggest that attenuation of BRMS1 may play a critical role in promoting migration, invasion and angiogenesis of ovarian cancer cells and BRMS1 may regulate the metastatic potential at least in part through upregulation of CXCR4 via NF-κB activation. Restoration of BRMS1 function is thus a potential new strategy for treating human ovarian cancer.
Collapse
Affiliation(s)
- Xiu-Jie Sheng
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical College, Guangzhou 510150, PR China.
| | | | | | | | | |
Collapse
|