1
|
Hsa_circ_0011292 regulates paclitaxel resistance partially through regulating CDCA4 expression by serving as a miR-3619-5p sponge in non-small cell lung cancer. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
2
|
Li X, Yang B, Ren H, Xiao T, Zhang L, Li L, Li M, Wang X, Zhou H, Zhang W. Hsa_circ_0002483 inhibited the progression and enhanced the Taxol sensitivity of non-small cell lung cancer by targeting miR-182-5p. Cell Death Dis 2019; 10:953. [PMID: 31844042 PMCID: PMC6915566 DOI: 10.1038/s41419-019-2180-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
In this study, we identified a novel circRNA, circ_0002483, and further investigated its functions in the progression and Taxol resistance of NSCLC. We found that circ_0002483 was expressed at low levels in NSCLC tissues and cell lines. Functional assays indicated that circ_0002483 overexpression significantly inhibited NSCLC cell proliferation and invasion in vitro and in vivo and enhanced the sensitivity of NSCLC cells to Taxol. Mechanistically, circ_0002483 was identified to sponge multiple miRNAs including miR-182-5p (also named miR-182), miR-520q-3p, miR-582-3p, miR-587, and miR-655. In addition, circ_0002483 was also demonstrated to regulate the expression of GRB2, FOXO1, and FOXO3, three target genes of miR-182-5p, by sponging miR-182-5p. Circ_0002483 was demonstrated to inhibit NSCLC progression in vitro and in vivo and enhanced the sensitivity of NSCLC cells to Taxol by sponging miR-182-5p to release the inhibition on GRB2, FOXO1, and FOXO3 mRNAs.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, China.
| | - Bo Yang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Haixia Ren
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Ting Xiao
- College of Pharmacy, Nankai University, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China
| | - Liang Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Lei Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Mingjiang Li
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Xuhui Wang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| | - Honggang Zhou
- College of Pharmacy, Nankai University, Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, 300350, China
| | - Weidong Zhang
- Department of Thoracic Surgery, Tianjin First Central Hospital, Tianjin, 300192, China
| |
Collapse
|
3
|
Liu B, He D, Wu J, Sun Q, Zhang M, Tan Q, Li Y, Zhang J. Catan-ionic hybrid lipidic nano-carriers for enhanced bioavailability and anti-tumor efficacy of chemodrugs. Oncotarget 2018; 8:30922-30932. [PMID: 28427235 PMCID: PMC5458178 DOI: 10.18632/oncotarget.15942] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 02/22/2017] [Indexed: 12/02/2022] Open
Abstract
To date there has not been any report on catan-ionic hybrid lipidic nano-carriers, let alone a report on applying them to deliver insoluble anti-tumor drugs. Catan-ionic hybrid lipidic nano-carriers containing curcumin (CUR-C-HLN) inherit the merits of catan-ionic systems, hybrid lipidic systems and nano-structured carriers (the second-generation substitute of solid lipidic nano-systems). Catan-ionic surfactants increased microvesicle stabilization by producing unordered isometric clusters, enhanced absorptive amount as an inhibitor of enzyme and protein, improved tumor accumulation by cellular endocytosis and membranous fusion; hybrid lipids helped to obtain high drug content and low leakage by forming a less-organized matrix arrangement. CUR-C-HLN favorably changed absorptive and pharmacokinetic properties after oral and/or intravenous administrations; improved cell growth inhibition, apoptotic inducing and anti-invasion effects; enhanced antitumor efficiency and reduced cancerous growth. Catan-ionic hybrid lipidic nano-carriers provide an alternative good choice for effective delivery of anticancerous chemodrugs.
Collapse
Affiliation(s)
- Bilin Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Dan He
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jianyong Wu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Quan Sun
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Mi Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400016, China
| | - Yao Li
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
4
|
Li S, Fang C, Zhang J, Liu B, Wei Z, Fan X, Sui Z, Tan Q. Catanionic lipid nanosystems improve pharmacokinetics and anti-lung cancer activity of curcumin. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1567-79. [PMID: 26995093 DOI: 10.1016/j.nano.2016.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/17/2022]
Abstract
Novel catanionic lipid nanosystems (CLNs) incorporating curcumin (CCM) were developed, and improvements in pharmacokinetics and enhanced anti-lung cancer activity were observed. CCM was present in a lipid matrix surrounded by cationic, anionic and zwitterionic surfactants, forming the core-shell nanosystems. Compared with free CCM, the CCM-CLNs had much higher oral and intravenous bioavailabilities due to enhanced absorption and reduced clearance. The CCM-CLNs exhibited greater cytotoxicity in Lewis lung cancer (LLC) cells, which might have been due to increased antiproliferative, proapoptotic and anti-invasive activities and induction of cell cycle arrest. The CCM-CLNs increased the antitumor efficacy of CCM and decreased the tumor growth rate in tumor-bearing mice. This is the first report of induction of apoptosis in LLC cells by CCM through the PI3K/Akt/FoxO1/Bim signaling pathway. Catanionic lipid nanocarriers show promise for the therapeutic delivery of insoluble anti-tumor drugs.
Collapse
Affiliation(s)
- Songlin Li
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chunshu Fang
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jingqing Zhang
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Bilin Liu
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing Medical University, Chongqing, China
| | - Zhuanqin Wei
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqing Fan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zheng Sui
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qunyou Tan
- Department of Thoracic Surgery, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|