1
|
Ondee T, Pongpirul K, Udompornpitak K, Sukkummee W, Lertmongkolaksorn T, Senaprom S, Leelahavanichkul A. High Fructose Causes More Prominent Liver Steatohepatitis with Leaky Gut Similar to High Glucose Administration in Mice and Attenuation by Lactiplantibacillus plantarum dfa1. Nutrients 2023; 15:1462. [PMID: 36986190 PMCID: PMC10056651 DOI: 10.3390/nu15061462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
High-sugar diet-induced prediabetes and obesity are a global current problem that can be the result of glucose or fructose. However, a head-to-head comparison between both sugars on health impact is still lacking, and Lactiplantibacillus plantarum dfa1 has never been tested, and has recently been isolated from healthy volunteers. The mice were administered with the high glucose or fructose preparation in standard mouse chaw with or without L. plantarum dfa1 gavage, on alternate days, and in vitro experiments were performed using enterocyte cell lines (Caco2) and hepatocytes (HepG2). After 12 weeks of experiments, both glucose and fructose induced a similar severity of obesity (weight gain, lipid profiles, and fat deposition at several sites) and prediabetes condition (fasting glucose, insulin, oral glucose tolerance test, and Homeostatic Model Assessment for Insulin Resistance (HOMA score)). However, fructose administration induced more severe liver damage (serum alanine transaminase, liver weight, histology score, fat components, and oxidative stress) than the glucose group, while glucose caused more prominent intestinal permeability damage (FITC-dextran assay) and serum cytokines (TNF-α, IL-6, and IL-10) compared to the fructose group. Interestingly, all of these parameters were attenuated by L. plantarum dfa1 administration. Because there was a subtle change in the analysis of the fecal microbiome of mice with glucose or fructose administration compared to control mice, the probiotics altered only some microbiome parameters (Chao1 and Lactobacilli abundance). For in vitro experiments, glucose induced more damage to high-dose lipopolysaccharide (LPS) (1 µg/mL) to enterocytes (Caco2 cell) than fructose, as indicated by transepithelial electrical resistance (TEER), supernatant cytokines (TNF-α and IL-8), and glycolysis capacity (by extracellular flux analysis). Meanwhile, both glucose and fructose similarly facilitated LPS injury in hepatocytes (HepG2 cell) as evaluated by supernatant cytokines (TNF-α, IL-6, and IL-10) and extracellular flux analysis. In conclusion, glucose possibly induced a more severe intestinal injury (perhaps due to LPS-glucose synergy) and fructose caused a more prominent liver injury (possibly due to liver fructose metabolism), despite a similar effect on obesity and prediabetes. Prevention of obesity and prediabetes with probiotics was encouraged.
Collapse
Affiliation(s)
- Thunnicha Ondee
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- School of Global Health, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Clinical Research Center, Bumrungrad International Hospital, Bangkok 10110, Thailand
- Department of Infection Biology & Microbiomes, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 3GB, UK
| | - Kanyarat Udompornpitak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Warumphon Sukkummee
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Department of Pharmacology, Faculty of Medicine Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanapat Lertmongkolaksorn
- Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Sayamon Senaprom
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Translational Research in Inflammation and Immunology Research Unit (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Ondee T, Pongpirul K, Janchot K, Kanacharoen S, Lertmongkolaksorn T, Wongsaroj L, Somboonna N, Ngamwongsatit N, Leelahavanichkul A. Lactiplantibacillus plantarum dfa1 Outperforms Enterococcus faecium dfa1 on Anti-Obesity in High Fat-Induced Obesity Mice Possibly through the Differences in Gut Dysbiosis Attenuation, despite the Similar Anti-Inflammatory Properties. Nutrients 2021; 14:nu14010080. [PMID: 35010955 PMCID: PMC8746774 DOI: 10.3390/nu14010080] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/22/2022] Open
Abstract
Fat reduction and anti-inflammation are commonly claimed properties of probiotics. Lactiplantibacillus plantarum and Enterococcus faecium were tested in high fat-induced obesity mice and in vitro experiments. After 16 weeks of probiotics, L. plantarum dfa1 outperforms E. faecium dfa1 on the anti-obesity property as indicated by body weight, regional fat accumulation, serum cholesterol, inflammatory cytokines (in blood and colon tissue), and gut barrier defect (FITC-dextran assay). With fecal microbiome analysis, L. plantarum dfa1 but not E. faecium dfa1 reduced fecal abundance of pathogenic Proteobacteria without an alteration in total Gram-negative bacteria when compared with non-probiotics obese mice. With palmitic acid induction, the condition media from both probiotics similarly attenuated supernatant IL-8, improved enterocyte integrity and down-regulated cholesterol absorption-associated genes in Caco-2 cell (an enterocyte cell line) and reduced supernatant cytokines (TNF-α and IL-6) with normalization of cell energy status (extracellular flux analysis) in bone-marrow-derived macrophages. Due to the anti-inflammatory effect of the condition media of both probiotics on palmitic acid-activated enterocytes was neutralized by amylase, the active anti-inflammatory molecules might, partly, be exopolysaccharides. As L. plantarum dfa1 out-performed E. faecium dfa1 in anti-obesity property, possibly through the reduced fecal Proteobacteria, with a similar anti-inflammatory exopolysaccharide; L. plantarum is a potentially better option for anti-obesity than E. faecium.
Collapse
Affiliation(s)
- Thunnicha Ondee
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.O.); (K.J.)
| | - Krit Pongpirul
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.O.); (K.J.)
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Bumrungrad International Hospital, Bangkok 10110, Thailand
- Correspondence: (K.P.); (A.L.)
| | - Kantima Janchot
- Department of Preventive and Social Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (T.O.); (K.J.)
| | - Suthicha Kanacharoen
- Department of Biology, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA;
| | - Thanapat Lertmongkolaksorn
- Research Management and Development Division, Office of the President, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Lampet Wongsaroj
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (L.W.); (N.S.)
| | - Naraporn Somboonna
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; (L.W.); (N.S.)
- Microbiome Research Unit for Probiotics in Food and Cosmetics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Natharin Ngamwongsatit
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Translational Research in Inflammation and Immunology Research Unit (TRIRU), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (K.P.); (A.L.)
| |
Collapse
|
3
|
Shantha Kumara HMC, Shah A, Miyagaki H, Yan X, Cekic V, Hedjar Y, Whelan RL. Plasma Levels of Keratinocyte Growth Factor Are Significantly Elevated for 5 Weeks After Minimally Invasive Colorectal Resection Which May Promote Cancer Recurrence and Metastasis. Front Surg 2021; 8:745875. [PMID: 34820416 PMCID: PMC8606552 DOI: 10.3389/fsurg.2021.745875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Human Keratinocyte Growth Factor (KGF) is an FGF family protein produced by mesenchymal cells. KGF promotes epithelial cell proliferation, plays a role in wound healing and may also support tumor growth. It is expressed by some colorectal cancers (CRC). Surgery's impact on KGF levels is unknown. This study's purpose was to assess plasma KGF levels before and after minimally invasive colorectal resection (MICR) for CRC. Aim: To determine plasma KGF levels before and after minimally invasive colorectal resection surgery for cancer pathology. Method: CRC MICR patients (pts) in an IRB approved data/plasma bank were studied. Pre-operative (pre-op) and post-operative (post-op) plasma samples were taken/stored. Late samples were bundled into 7 day blocks and considered as single time points. KGF levels (pg/ml) were measured via ELISA (mean ± SD). The Wilcoxon paired t-test was used for statistical analysis. Results: Eighty MICR CRC patients (colon 61%; rectal 39%; mean age 65.8 ± 13.3) were studied. The mean incision length was 8.37 ± 3.9 and mean LOS 6.5 ± 2.6 days. The cancer stage breakdown was; I (23), II (26), III (27), and IV (4). The median pre-op KGF level was 17.1 (95 %CI: 14.6-19.4; n = 80); significantly elevated (p < 0.05) median levels (pg/ml) were noted on post-op day (POD) 1 (23.4 pg/ml; 95% CI: 21.4-25.9; n = 80), POD 3 (22.5 pg/ml; 95% CI: 20.7-25.9; n = 76), POD 7-13 (21.8 pg/ml; 95% CI: 17.7-25.4; n = 50), POD 14-20 (20.1 pg/ml; 95% CI: 17.1-23.9; n = 33), POD 21-27 (19.6 pg/ml; 95% CI: 15.2-24.9; n = 15) and on POD 28-34 (16.7 pg/ml; 95% CI: 14.0-25.8; n = 12). Conclusion: Plasma KGF levels were significantly elevated for 5 weeks after MICR for CRC. The etiology of these changes is unclear, surgical trauma related acute inflammatory response and wound healing process may play a role. These changes, may stimulate angiogenesis in residual tumor deposits after surgery.
Collapse
Affiliation(s)
- H M C Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Abhinit Shah
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | | | - Xiaohong Yan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Yanni Hedjar
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States
| | - Richard L Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, Lenox Hill Hospital, Northwell Health, New York, NY, United States.,Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| |
Collapse
|
4
|
Lactobacillus acidophilus LA5 improves saturated fat-induced obesity mouse model through the enhanced intestinal Akkermansia muciniphila. Sci Rep 2021; 11:6367. [PMID: 33737543 PMCID: PMC7973717 DOI: 10.1038/s41598-021-85449-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, a major healthcare problem worldwide, induces metabolic endotoxemia through the gut translocation of lipopolysaccharides (LPS), a major cell wall component of Gram-negative bacteria, causing a chronic inflammatory state. A combination of several probiotics including Lactobacillus acidophilus 5 (LA5), a potent lactic acid-producing bacterium, has previously been shown to attenuate obesity. However, data on the correlation between a single administration of LA5 versus microbiota alteration might be helpful for the probiotic adjustment. LA5 was administered daily together with a high-fat diet (HFD) for 8 weeks in mice. Furthermore, the condition media of LA5 was also tested in a hepatocyte cell-line (HepG2 cells). Accordingly, LA5 attenuated obesity in mice as demonstrated by weight reduction, regional fat accumulation, lipidemia, liver injury (liver weight, lipid compositions, and liver enzyme), gut permeability defect, endotoxemia, and serum cytokines. Unsurprisingly, LA5 improved these parameters and acidified fecal pH leads to the attenuation of fecal dysbiosis. The fecal microbiome analysis in obese mice with or without LA5 indicated; (i) decreased Bacteroidetes (Gram-negative anaerobes that predominate in non-healthy conditions), (ii) reduced total fecal Gram-negative bacterial burdens (the sources of gut LPS), (iii) enhanced Firmicutes (Gram-positive bacteria with potential benefits) and (iv) increased Verrucomycobia, especially Akkermansia muciniphila, a bacterium with the anti-obesity property. With LA5 administration, A. muciniphila in the colon were more than 2,000 folds higher than the regular diet mice as determined by 16S rRNA. Besides, LA5 produced anti-inflammatory molecules with a similar molecular weight to LPS that reduced cytokine production in LPS-activated HepG2 cells. In conclusion, LA5 attenuated obesity through (i) gut dysbiosis attenuation, partly through the promotion of A. muciniphila (probiotics with the difficulty in preparation processes), (ii) reduced endotoxemia, and (iii) possibly decreased liver injury by producing the anti-inflammatory molecules.
Collapse
|
5
|
Perrot-Applanat M, Vacher S, Pimpie C, Chemlali W, Derieux S, Pocard M, Bieche I. Differential gene expression in growth factors, epithelial mesenchymal transition and chemotaxis in the diffuse type compared with the intestinal type of gastric cancer. Oncol Lett 2019; 18:674-686. [PMID: 31289541 PMCID: PMC6546989 DOI: 10.3892/ol.2019.10392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/21/2019] [Indexed: 12/17/2022] Open
Abstract
Gastric cancer (GC) is a highly heterogeneous disease and one of the major causes of cancer-related mortality worldwide. Diffuse-type gastric adenocarcinoma (or poorly cohesive- with independent cells) is characterized by aggressive behavior (rapid invasion, chemoresistance and peritoneal metastasis), as compared with intestinal-subtype adenocarcinoma. Diffuse subtype GC additionally has a substantially increasing incidence rate in Europe and the USA, and was often associated with younger age. Our objective was to analyze the expression and clinical significance of genes involved in several signaling pathways in diffuse-type GC. Tumors samples and non-malignant gastric tissues were obtained from patients with GC (diffuse-type and intestinal-subtype adenocarcinoma). The expression of 33 genes coding for proteins involved in four categories, growth factors and receptors, epithelial-mesenchymal transition, cell proliferation and migration, and angiogenesis was determined by reverse transcription-quantitative polymerase chain reaction. The expression of 22 genes was significantly upregulated in diffuse-type GC and two were downregulated (including CDH1) compared with normal tissues. Among these genes, acompared with intestinal-subtype adenocarcinoma, diffuse-type GC revealed elevated levels of IGF1 and IGF1R, FGF7 and FGFR1, ZEB2, CXCR4, CXCL12 and RHOA, and decreased levels of CDH1, MMP9 and MKI67. The expression of selected genes was compared with other genes and according to clinical parameters. Furthermore, TGF-β expression was significantly increased in linitis, a sub-population of diffusely infiltrating type associated with extensive fibrosis and tumor invasion. Our study identified new target genes (IGF1, FGF7, CXCR4, TG-β and ZEB2) whose expression is associated with aggressive phenotype of diffuse-type GC.
Collapse
Affiliation(s)
- Martine Perrot-Applanat
- INSERM U965, Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
| | - Sophie Vacher
- Department of Genetics, Pharmacogenomics Unit-Institut Curie, University of Paris-Descartes-Paris 5, 75005 Paris, France
| | - Cynthia Pimpie
- INSERM U965, Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
| | - Walid Chemlali
- Department of Genetics, Pharmacogenomics Unit-Institut Curie, University of Paris-Descartes-Paris 5, 75005 Paris, France
| | - Simon Derieux
- Department of Digestive and Oncology Surgery-Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
| | - Marc Pocard
- INSERM U965, Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
- Department of Digestive and Oncology Surgery-Lariboisiere Hospital, University of Paris-Diderot-Paris 7, 75010 Paris, France
| | - Ivan Bieche
- Department of Genetics, Pharmacogenomics Unit-Institut Curie, University of Paris-Descartes-Paris 5, 75005 Paris, France
| |
Collapse
|