1
|
Ghodrati R, Safaralizadeh R, Dastmalchi N, Hosseinpourfeizi M, Asadi M, Shirmohammadi M, Baradaran B. Overexpression of lncRNA DLEU1 in Gastric Cancer Tissues Compared to Adjacent Non-Tumor Tissues. J Gastrointest Cancer 2021; 53:990-994. [PMID: 34738190 DOI: 10.1007/s12029-021-00733-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Gastric cancer (GC) is caused by environmental factors and genetic changes of protein-coding- and non-coding sequences, which entail short non-coding RNAs (microRNAs) and long non-coding RNAs (lncRNAs). DLEU1 (deleted in lymphocytic leukemia 1), as an effective lncRNA located on chromosome 14.3q 13, modulates the nuclear factor-kB (NF-kB) signaling pathway. This gene usually plays an oncogenic role in the tumorigenesis of multiple types of cancer. The present study examined the expression level of DLEU1 and its association with clinical-pathological characteristics in GC. METHODS Total RNA of 100 specimens was extracted by TRIzol reagent. After cDNA synthesis, qRT-PCR analysis was performed to measure the expression level of the DLEU1 gene and the obtained data were analyzed by SPSS 16.0. RESULTS The relative expression level of DLEU1 significantly increased in tumor specimens compared to the normal tumor margin specimens. The biomarker index of lncRNA DLEU1 was 0.7 in tumor tissues. The observed high expression level of DLEU1 was pertinent to the pathological progressive TNM stage, lymph node metastasis, differentiation degree, patient's age and lifestyle, and Helicobacter pylori infection in GC patients. CONCLUSION The obtained findings suggested that DLEU1 acts as an oncogene in GC and might be a new target for gene therapy of GC.
Collapse
Affiliation(s)
- Roghieh Ghodrati
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Narges Dastmalchi
- Department of Biology, University College of Nabi Akram, Tabriz, Iran
| | | | - Milad Asadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Shirmohammadi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Raei N, Safaralizadeh R, Hesseinpourfeizi M, Yazdanbod A, Pourfarzi F, Latifi-Navid S. Crosstalk between lncRNAs and miRNAs in gastrointestinal cancer drug resistance. Life Sci 2021; 284:119933. [PMID: 34508759 DOI: 10.1016/j.lfs.2021.119933] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/28/2021] [Accepted: 09/01/2021] [Indexed: 02/09/2023]
Abstract
Gastrointestinal cancers are one of the most prevalent malignancies worldwide. Dysregulation of lncRNAs by epigenetic alteration is crucial in gastrointestinal carcinogenesis. Epigenetic alteration includes DNA methylation, chromatin remodeling, histone modifications, and deregulated-gene expression by miRNAs. LncRNAs are involved in biological processes, including, uncontrolled cell division, migration, invasion, and resistance to apoptosis and drugs. Multiple-drug resistance (MDR) is a crucial obstacle in effective chemotherapy for gastrointestinal cancers. MDR can be associated with the prognosis and diagnosis of patients receiving chemotherapeutic agents (i.e. cisplatin, oxaliplatin, platinum, 5-fluorouracil, gefitinib, methotrexate, taxol, cetuximab, docetaxel, and gemcitabine). In this review, we focused on recently known lncRNAs and their relation with miRNAs and chemotherapeutic drugs, and their modulation in gastrointestinal cancers. Moreover, we mentioned the future prospective and clinical application of lncRNAs as a critical indicator and biomarker in diagnosis, prognosis, staging, grading, and treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Negin Raei
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | | | - Abbas Yazdanbod
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farhad Pourfarzi
- Digestive Disease Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
3
|
The Correlation Between Helicobacter pylori Infection and Lnc-OC1 Expression in Gastric Cancer Tissues in an Iranian Population. J Gastrointest Cancer 2020; 52:600-605. [DOI: 10.1007/s12029-020-00438-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Dastmalchi N, Khojasteh SMB, Nargesi MM, Safaralizadeh R. The correlation between lncRNAs and Helicobacter pylori in gastric cancer. Pathog Dis 2020; 77:5715909. [PMID: 31981356 DOI: 10.1093/femspd/ftaa004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/24/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection performs a key role in gastric tumorigenesis. Long non-coding RNAs (lncRNAs) have demonstrated a great potential to be regarded as effective malignancy biomarkers for various gastrointestinal diseases including gastric cancer (GC). The present review highlights the relationship between lncRNAs and H. pylori in GC. Several studies have examined not only the involvement of lncRNAs in H. pylori-associated GC progression but also their molecular mechanisms of action. Among the pertinent studies, some have addressed the effects of H. pylori infection on modulatory networks of lncRNAs, while others have evaluated the effects of changes in the expression level of lncRNAs in H. pylori-associated gastric diseases, especially GC. The relationship between lncRNAs and H. pylori was found to be modulated by various molecular pathways.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mirsaed Miri Nargesi
- Department of Diagnostic Genetics, LabPLUS, Auckland City Hospital, Auckland District Health Board (ADHB), Auckland, New Zealand
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
5
|
Rahmani Z, Mojarrad M, Moghbeli M. Long non-coding RNAs as the critical factors during tumor progressions among Iranian population: an overview. Cell Biosci 2020; 10:6. [PMID: 31956395 PMCID: PMC6961246 DOI: 10.1186/s13578-020-0373-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cancer is associated with various genetic and environmental risk factors. Beside the mutations or aberrant expression of protein-coding genes, the genetic deregulation of non-coding RNAs has also an important role during tumor progression and metastasis. Long non-coding RNAs (lncRNAs) are a class of ncRNAs larger than 200 nucleotides that may function as tumor-suppressor or oncogene. MAIN BODY There is a raising trend of cancer incidence among Iranian population during the last decades. Therefore, it is required to prepare a general population specific panel of genetic markers for the early detection of cancer in this population. The tissue-specific expression characteristics and high stability in body fluids highlight the lncRNAs as efficient diagnostic and prognostic noninvasive biomarkers in cancer. In present review we summarized all of the lncRNAs which have been reported until now in different tumors among Iranian patients. CONCLUSIONS This review paves the way of introducing a population based noninvasive diagnostic panel of lncRNAs for the early detection of tumor cells among Iranian population.
Collapse
Affiliation(s)
- Zahra Rahmani
- Department of Medical Genetics, Golestan University of Medical Sciences, Gorgan, Iran
| | - Majid Mojarrad
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Overexpression and Clinicopathological Correlation of Long Noncoding RNA TMPO-AS1 in Colorectal Cancer Patients. J Gastrointest Cancer 2019; 51:952-956. [DOI: 10.1007/s12029-019-00333-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Galamb O, Barták BK, Kalmár A, Nagy ZB, Szigeti KA, Tulassay Z, Igaz P, Molnár B. Diagnostic and prognostic potential of tissue and circulating long non-coding RNAs in colorectal tumors. World J Gastroenterol 2019; 25:5026-5048. [PMID: 31558855 PMCID: PMC6747286 DOI: 10.3748/wjg.v25.i34.5026] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/26/2019] [Accepted: 08/07/2019] [Indexed: 02/06/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are members of the non-protein coding RNA family longer than 200 nucleotides. They participate in the regulation of gene and protein expression influencing apoptosis, cell proliferation and immune responses, thereby playing a critical role in the development and progression of various cancers, including colorectal cancer (CRC). As CRC is one of the most frequently diagnosed malignancies worldwide with high mortality, its screening and early detection are crucial, so the identification of disease-specific biomarkers is necessary. LncRNAs are promising candidates as they are involved in carcinogenesis, and certain lncRNAs (e.g., CCAT1, CRNDE, CRCAL1-4) show altered expression in adenomas, making them potential early diagnostic markers. In addition to being useful as tissue-specific markers, analysis of circulating lncRNAs (e.g., CCAT1, CCAT2, BLACAT1, CRNDE, NEAT1, UCA1) in peripheral blood offers the possibility to establish minimally invasive, liquid biopsy-based diagnostic tests. This review article aims to describe the origin, structure, and functions of lncRNAs and to discuss their contribution to CRC development. Moreover, our purpose is to summarise lncRNAs showing altered expression levels during tumor formation in both colon tissue and plasma/serum samples and to demonstrate their clinical implications as diagnostic or prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Orsolya Galamb
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Barbara K Barták
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Alexandra Kalmár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Zsófia B Nagy
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Krisztina A Szigeti
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Zsolt Tulassay
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| | - Peter Igaz
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
- 2nd Department of Internal Medicine, Semmelweis University, Budapest H-1088, Hungary
| | - Béla Molnár
- Molecular Medicine Research Group, Hungarian Academy of Sciences, Budapest H-1088, Hungary
| |
Collapse
|
8
|
Xiong W, Qin J, Cai X, Xiong W, Liu Q, Li C, Ju Y, Wang Q, Li Y, Yang Y. Overexpression LINC01082 suppresses the proliferation, migration and invasion of colon cancer. Mol Cell Biochem 2019; 462:33-40. [PMID: 31432387 DOI: 10.1007/s11010-019-03607-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/10/2019] [Indexed: 02/08/2023]
Abstract
Long non-coding RNAs (lncRNAs) are emerging as pivotal regulators in human cancer. LINC01082 was expressed as decreased in colon cancer by previous lncRNA-seq result and TCGA database, however, the role and function of LINC0182 is not clear in colon cancer. Here, we aimed to explore the role of LINC01082 in colon cancer for exploring the etiopathogenesis of colon cancer. RT-qPCR for LINC01082 expression in tissues (colon cancer vs. their matched adjacent non-cancerous tissues, ANT, n = 39) and cells (colon cancer cells vs. normal colon cells, n = 4) were performed. CCK-8 assay for proliferation of colon cancer, Transwell assay for migration and invasion were carried out in sw480 and sw620 cells. The results revealed that LINC01082 was significantly decreased in tissues and cell lines of colon cancer. Overexpressed LINC01082 significantly suppressed the proliferation ability of colon cancer cells. The migration and invasion of colon cancer cells were also suppressed after LINC01082 overexpression. These findings demonstrated that LINC01082 may act in suppressing the incidence and development of colon cancer via suppressing cell proliferation, migration and invasion, indicating that LINC01082 may act as a new tumor suppressor and may be a promising therapy target for colon cancer.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Jiyong Qin
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Xinyi Cai
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Wei Xiong
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Qiuyan Liu
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Cheng Li
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Yunhe Ju
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Qiaoli Wang
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China
| | - Yunfeng Li
- Department of Colorectal Surgery, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China.
| | - Yi Yang
- Department of Radiation Oncology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, 519 Kunzhou Road, Xishan District, Kunming, 650100, Yunnan, People's Republic of China.
| |
Collapse
|
9
|
Hao Y, Zhang J, Shan G, Zhang N, Jin W, Nan K. Establishment of optimal regulatory network of colorectal cancer based on p42.3 protein. Saudi J Biol Sci 2017; 24:1781-1786. [PMID: 29551923 PMCID: PMC5851908 DOI: 10.1016/j.sjbs.2017.11.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023] Open
Abstract
Objective: to establish regulatory network of colorectal cancer involving p42.3 protein and to provide theoretical evidence for deep functional exploration of p42.3 protein in the onset and development of colorectal cancer. Methods: with protein similarity algorithm, reference protein set of p42.3 cell apoptosis was built according to structural features of p42.3. GO and KEGG databases were used to establish regulatory network of tumor cell apoptosis involving p42.3; meanwhile, the largest possible working pathway that involves p42.3 protein was screened out based on Bayesian network theory. Besides, GO and KEGG were used to build regulatory network on early diagnosis gene markers for colorectal cancer including WWOX, K-ras, COX-2, p53, APC, DCC and PTEN, at the same time, a regulatory network of colorectal cancer cell apoptosis which involves p42.3 was established. Results: cell apoptotic regulatory network that p42.3 participates in primarily consists of Bcl-2 family genes and the largest possible pathway is p42.3 → FKBP → Bcl-2 centered as FKBP protein. Combined with colorectal cancer regulatory network that involves early diagnosis gene markers, it can be predicted that p42.3 is most likely to regulate the colorectal cancer cell apoptosis through FKBP → Bcl-2 → Bax → caspase-9 → caspase-3 pathway. Conclusion: the colorectal cancer apoptosis network based on p42.3 established in the study provides theoretical evidence for deep exploration of p42.3 regulatory mechanism and molecular targeting treatment of colorectal cancer.
Collapse
Affiliation(s)
- Yibin Hao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710077, China.,Department of Oncological Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Jianhua Zhang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University, Zhengzhou 450001, China
| | - Guoyong Shan
- Department of Oncological Radiotherapy, People's Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Ning Zhang
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University, Zhengzhou 450001, China
| | - Wenwen Jin
- Medical Engineering Technology and Data Mining Institute of Zhengzhou University, Zhengzhou 450001, China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710077, China
| |
Collapse
|
10
|
Long intergenic non-coding RNA GALMD3 in chicken Marek's disease. Sci Rep 2017; 7:10294. [PMID: 28860661 PMCID: PMC5579197 DOI: 10.1038/s41598-017-10900-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/16/2017] [Indexed: 12/18/2022] Open
Abstract
Long intergenic non-coding RNAs (lincRNAs) are transcribed from non-coding DNA sequences. Studies have revealed that aberrant expressions of lincRNAs are associated with various types of cancers and neurological disorders. Marek's disease (MD) is a highly contagious T-cell lymphoid neoplasia of chicken induced by Marek's disease virus (MDV). In this study, we first identified and validated linc-GALMD3 highly expressed in MDV-infected CD4+ T cells by RNA-Seq and qRT-PCR. By RNA-Seq analysis in MDCC-MSB1 cells after loss of function of linc-GALMD3 by shRNA, we found that linc-GALMD3 could positively cis-regulate its downstream gga-miR-223 gene expression. In contrast, it could trans-regulate the 748 differentially expressed genes (FDR < 0.01) that were mainly enriched into mitochondrial structure and cell cycle processes using GO analysis. Of these, the most significantly expressed gene EPYC might cause iris lesion in MD. The other eight genes, NDUFA4, NDUFB6, NDUFV1, NDUFS8, SDHB, UQCRC1, UQCRC2, and COX7A2, actively participated in oxidative phosphorylation in mitochondrial dysfunction and cell death. Most importantly, we found that the MDV replication was repressed when linc-GALMD3 was knocked down in CEF cells. Our results suggested that linc-GALMD3 might be a critical regulator in chicken MD and could be used as a candidate-promising mark for MD prevention, diagnosis, and treatment.
Collapse
|
11
|
Hao Y, Shan G, Nan K. Establishment of apoptotic regulatory network for genetic markers of colorectal cancer. Saudi J Biol Sci 2017; 24:466-476. [PMID: 28386169 PMCID: PMC5372377 DOI: 10.1016/j.sjbs.2017.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/25/2016] [Accepted: 01/06/2017] [Indexed: 11/30/2022] Open
Abstract
Our purpose is to screen out genetic markers applicable to early diagnosis for colorectal cancer and to establish apoptotic regulatory network model for colorectal cancer, thereby providing theoretical evidence and targeted therapy for early diagnosis of colorectal cancer. Taking databases including CNKI, VIP, Wanfang data, Pub Med, and MEDLINE as main sources of literature retrieval, literatures associated with genetic markers applied to early diagnosis of colorectal cancer were searched to perform comprehensive and quantitative analysis by Meta analysis, hence screening genetic markers used in early diagnosis of colorectal cancer. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were employed to establish apoptotic regulatory network model based on screened genetic markers, and then verification experiment was conducted. Through Meta analysis, seven genetic markers were screened out, including WWOX, K-ras, COX-2, p53, APC, DCC and PTEN, among which DCC shows highest diagnostic efficiency. GO analysis of genetic markers found that six genetic markers played role in biological process, molecular function and cellular component. It was indicated in apoptotic regulatory network built by KEGG analysis and verification experiment that WWOX could promote tumor cell apoptotic in colorectal cancer and elevate expression level of p53. The apoptotic regulatory model of colorectal cancer established in this study provides clinically theoretical evidence and targeted therapy for early diagnosis of colorectal cancer.
Collapse
Affiliation(s)
- Yibin Hao
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710077, China
- Department of Oncological Radiotherapy, People’s Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Guoyong Shan
- Department of Oncological Radiotherapy, People’s Hospital of Zhengzhou, Zhengzhou 450003, China
| | - Kejun Nan
- Department of Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710077, China
- Corresponding author.
| |
Collapse
|