1
|
Sarangi P. Role of indoleamine 2, 3-dioxygenase 1 in immunosuppression of breast cancer. CANCER PATHOGENESIS AND THERAPY 2024; 2:246-255. [PMID: 39371092 PMCID: PMC11447360 DOI: 10.1016/j.cpt.2023.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 10/08/2024]
Abstract
Breast cancer (BC) contributes greatly to global cancer incidence and is the main cause of cancer-related deaths among women globally. It is a complex disease characterized by numerous subtypes with distinct clinical manifestations. Immune checkpoint inhibitors (ICIs) are not effective in all patients and have been associated with tumor resistance and immunosuppression. Because amino acid (AA)-catabolizing enzymes have been shown to regulate immunosuppressive effects, this review investigated the immunosuppressive roles of indoleamine 2,3-dioxygenase 1 (IDO1), a tryptophan (Trp)-catabolizing enzyme, which is overexpressed in various metastatic tumors. It promotes immunomodulatory effects by depleting Trp in the regional microenvironment. This leads to a reduction in the number of immunogenic immune cells, such as effector T and natural killer (NK) cells, and an increase in tolerogenic immune cells, such as regulatory T (Treg) cells. The BC tumor microenvironment (TME) establishes a supportive niche where cancer cells can interact with immune cells and neighboring endothelial cells and is thus a feasible target for cancer therapy. In many immunological contexts, IDO1 regulates immune control by causing regional metabolic changes in the TME and tissue environment, which may further affect the maturation of systemic immunological tolerance. In the development of effective treatment targets and approaches, it is essential to understand the immunomodulatory effects exerted by AA-catabolizing enzymes, such as IDO1, on the components of the TME.
Collapse
Affiliation(s)
- Pratyasha Sarangi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| |
Collapse
|
2
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Soleiman Ekhtiyari M, Kfoury Junior JR. Landscape of unconventional γδ T cell subsets in cancer. Mol Biol Rep 2024; 51:238. [PMID: 38289417 DOI: 10.1007/s11033-024-09267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
T cells are broadly categorized into two groups, namely conventional and unconventional T cells. Conventional T cells are the most prevalent and well-studied subset of T cells. On the other hand, unconventional T cells exhibit diverse functions shared between innate and adaptive immune cells. During recent decades, γδ T cells have received attention for their roles in cancer immunity. These cells can detect various molecules, such as lipids and metabolites. Also, they are known for their distinctive ability to recognize and target cancer cells in the tumor microenvironment (TME). This feature of γδ T cells could provide a unique therapeutic tool to fight against cancer. Understanding the role of γδ T cells in TME is essential to prepare the groundwork to use γδ T cells for clinical purposes. Here, we provide recent knowledge regarding the role γδ T cell subsets in different cancer types.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | | | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
3
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Massoco CDO, Kfoury Junior JR. IDO blockade negatively regulates the CTLA-4 signaling in breast cancer cells. Immunol Res 2023; 71:679-686. [PMID: 37014514 DOI: 10.1007/s12026-023-09378-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Cancer is classified into metabolic and/or genetic disorders; notably, the tryptophan catabolism pathway is vital in different cancer types. Here, we focused on the interaction and molecular connection between the cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) receptor and indoleamine-2,3-dioxygenase (IDO) enzyme. To test the impact of the selected immunotherapies on breast cancer cell migration and cell survival, we used in vitro assays. Also, we test the impact of anti-CTLA-4 antibody on the IDO-positive cells. The results of cell migration and clonogenic assays showed that anti-CTLA-4 antibody reduces cancer cell migration and clonogenic abilities of murine breast cancer cells. In addition, the result of flow cytometry showed that the anti-CTLA-4 antibody did not change the percentage of IDO-positive cancer cells. Notably, administrating an IDO blocker, 1-Methyl-DL-tryptophan (1MT), reduces the efficiency of the antiCTLA-4 antibody. The enzymatic blocking of the IDO reduces the efficiency of the anti-CTLA-4 antibody on cell migration and clonogenic abilities suggesting that there is an inhibitory interaction at the molecular level between functions of CTLA-4 and IDO. It is unclear via which mechanism(s) IDO interacts with CTLA-4 signaling and also why blocking IDO makes disruption in CTLA-4 signaling in cancer cells. Indeed, evaluating the role of IDO in CTLA-4 signaling in cancer cells may assist in clarifying a poor response to CTLA-4 immunotherapies by some patients. Hence, further investigation of the molecular interaction between CTLA-4 and IDO might help to improve the efficiency of CTLA-4 immunotherapy.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Túlio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
4
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Zaidan Dagli ML, Massoco CDO, Kfoury Junior JR. Indoleamine-2,3 dioxygenase: a fate-changer of the tumor microenvironment. Mol Biol Rep 2023:10.1007/s11033-023-08469-3. [PMID: 37217614 DOI: 10.1007/s11033-023-08469-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Indoleamine-2,3 dioxygenase is a rate-limiting enzyme in the tryptophan catabolism in kynurenine pathways that has an immunosuppressive effect and supports cancer cells to evade the immune system in different cancer types. Diverse cytokines and pathways upregulate the production of indoleamine-2,3 dioxygenase enzymes in the tumor microenvironment and cause more production and activity of this enzyme. Ultimately, this situation results in anti-tumor immune suppression which is in favor of tumor growth. Several inhibitors such as 1-methyl-tryptophan have been introduced for indoleamine-2,3 dioxygenase enzyme and some of them are widely utilized in pre-clinical and clinical trials. Importantly at the molecular level, indoleamine-2,3 dioxygenase is positioned in a series of intricate signaling and molecular networks. Here, the main objective is to provide a focused view of indoleamine-2,3 dioxygenase enhancer pathways and propose further studies to cover the gap in available information on the function of indoleamine-2,3 dioxygenase enzyme in the tumor microenvironment.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Túlio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
5
|
Yang H, Liu Y. Kinesin Family Member 2A Serves as a Potential Biomarker Reflecting More Frequent Lymph Node Metastasis and Tumor Recurrence Risk in Basal-Like Breast Cancer Patients. Front Surg 2022; 9:889294. [PMID: 35784940 PMCID: PMC9243457 DOI: 10.3389/fsurg.2022.889294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/11/2022] [Indexed: 12/24/2022] Open
Abstract
Background Kinesin family member 2A (KIF2A) is reported as an oncogene and a potential biomarker for progression and prognosis in several cancers such as cervical, ovarian, and gastric. However, its clinical value in basal-like breast cancer (BLBC) is unclear. This study aims to evaluate KIF2A expression and its correlation with clinical features and survival rates in BLBC patients. Methods KIF2A mRNA and protein expressions in tumor and adjacent tissues from 89 BLBC patients are assessed by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry assays, respectively. Results Both KIF2A protein (p < 0.001) and mRNA expressions (p < 0.001) were higher in tumor than in adjacent tissue. Besides, tumor KIF2A protein expression was positively correlated with N (p = 0.028) and TNM (p = 0.014) stages; meanwhile, tumor KIF2A mRNA expression was positively correlated with N stage (p = 0.046), TNM stage (p = 0.006), and tumor size (p = 0.043). Additionally, both tumor KIF2A protein (p = 0.035) and mRNA (p = 0.039) high expressions were correlated with worse disease-free survival (DFS) but not with overall survival (both p > 0.05). Moreover, tumor KIF2A protein expression was higher in relapsed patients than in non-relapsed patients within 3 years (p = 0.015) and 5 years (p = 0.031), whereas no difference was found between the dead and survivors within 3 years (p = 0.057) or 5 years (p = 0.107). Lastly, after adjustment, tumor KIF2A mRNA high exhibited a trend that correlated with DFS but without statistical significance (p = 0.051). Conclusion KIF2A correlates with more frequent lymph node metastasis and worse DFS in BLBC patients, shedding light on its potency as a biomarker for BLBC.
Collapse
Affiliation(s)
| | - Yongjun Liu
- Department of Thyroid and Breast Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Ding Y, Wang L, Li H, Miao F, Zhang Z, Hu C, Yu W, Tang Q, Shao G. Application of lipid nanovesicle drug delivery system in cancer immunotherapy. J Nanobiotechnology 2022; 20:214. [PMID: 35524277 PMCID: PMC9073823 DOI: 10.1186/s12951-022-01429-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/20/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy has gradually emerged as the most promising anticancer therapy. In addition to conventional anti-PD-1/PD-L1 therapy, anti-CTLA-4 therapy, CAR-T therapy, etc., immunotherapy can also be induced by stimulating the maturation of immune cells or inhibiting negative immune cells, regulating the tumor immune microenvironment and cancer vaccines. Lipid nanovesicle drug delivery system includes liposomes, cell membrane vesicles, bacterial outer membrane vesicles, extracellular vesicles and hybrid vesicles. Lipid nanovesicles can be used as functional vesicles for cancer immunotherapy, and can also be used as drug carriers to deliver immunotherapy drugs to the tumor site for cancer immunotherapy. Here, we review recent advances in five kinds of lipid nanovesicles in cancer immunotherapy and assess the clinical application prospects of various lipid nanovesicles, hoping to provide valuable information for clinical translation in the future.
Collapse
Affiliation(s)
- Yinan Ding
- Medical School of Southeast University, Nanjing, 210009, China
| | - Luhong Wang
- Medical School of Southeast University, Nanjing, 210009, China
| | - Han Li
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, 210009, China
| | - Fengqin Miao
- Medical School of Southeast University, Nanjing, 210009, China
| | - Zhiyuan Zhang
- Department of Neurosurgery, Nanjing Jinling Hospital, Nanjing University, Nanjing, 210002, China
| | - Chunmei Hu
- Department of Tuberculosis, the Second Affiliated Hospital of Southeast University (the Second Hospital of Nanjing), Nanjing, 210009, China
| | - Weiping Yu
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Qiusha Tang
- Medical School of Southeast University, Nanjing, 210009, China.
| | - Guoliang Shao
- Department of Interventional Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|