1
|
Hu T, Zhang Y, Yang T, He Q, Zhao M. LYPD3, a New Biomarker and Therapeutic Target for Acute Myelogenous Leukemia. Front Genet 2022; 13:795820. [PMID: 35360840 PMCID: PMC8963240 DOI: 10.3389/fgene.2022.795820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Acute myelogenous leukemia (AML) is nosocomial with the highest pediatric mortality rates and a relatively poor prognosis. C4.4A(LYPD3) is a tumorigenic and high-glycosylated cell surface protein that has been proven to be linked with the carcinogenic effects in solid tumors, but no hematologic tumors have been reported. We focus on exploring the molecular mechanism of LYPD3 in the regulation of the occurrence and development of AML to provide a research basis for the screening of markers related to the treatment and prognosis. Methods: Datasets on RNA Sequencing (RNA-seq) and mRNA expression profiles of 510 samples were obtained from The Cancer Genome Atlas Program/The Genotype-Tissue Expression (Tcga-gtex) on 10 March 2021, which included the information on 173 AML tumorous tissue samples and 337 normal blood samples. The differential expression, identification of prognostic genes based on the COX regression model, and LASSO regression were analyzed. In order to better verify, experiments including gene knockdown mediated by small interfering RNA (siRNA), cell proliferation assays, and Western blot were prefomed. We studied the possible associated pathways through which LYPD3 may have an impact on the pathogenesis and prognosis of AML by gene set enrichment analysis (GSEA). Results: A total of 11,490 differential expression genes (DEGs) were identified. Among them, 4,164 genes were upregulated, and 7,756 genes were downregulated. The univariate Cox regression analysis and LASSO regression analysis found that 28 genes including LYPD3, DNAJC8, and other genes were associated with overall survival (OS). After multivariate Cox analysis, a total of 10 genes were considered significantly correlated with OS in AML including LYPD3, which had a poor impact on AML (p <0.05). The experiment results also supported the above conclusion. We identified 25 pathways, including the E2F signaling pathway, p53 signaling pathway, and PI3K_AKT signaling pathway, that were significantly upregulated in AML samples with high LYPD3 expression (p < 0.05) by GSEA. Further, the results of the experiment suggested that LYPD3 participates in the development of AML through the p53 signaling pathway or/and PI3K/AKT signaling pathway. Conclusion: This study first proved that the expression of LYPD3 was elevated in AML, which was correlated with poor clinical characteristics and prognosis. In addition, LYPD3 participates in the development of AML through p53 or/and the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Tingting Hu
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Yingjie Zhang
- College of Biology, Hunan University, Changsha, China
| | - Tianqing Yang
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qingnan He, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Qingnan He, ; Mingyi Zhao,
| |
Collapse
|
2
|
β2-Adrenergic Signalling Promotes Cell Migration by Upregulating Expression of the Metastasis-Associated Molecule LYPD3. BIOLOGY 2020; 9:biology9020039. [PMID: 32098331 PMCID: PMC7168268 DOI: 10.3390/biology9020039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/13/2020] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Metastasis is associated with poor prognosis in breast cancer. Although some studies suggest beta-blockers increase survival by delaying metastasis, others have been discordant. This study provides both insights into the anomalous findings and identifies potential biomarkers that may be treatment targets. Cell line models of basal-type and oestrogen receptor-positive breast cancer were profiled for basal levels of adrenoceptor gene/protein expression, and β2-adrenoceptor mediated cell behaviour including migration, invasion, adhesion, and survival in response to adrenoceptor agonist/antagonist treatment. Protein profiling and histology identified biomarkers and drug targets. Baseline levels of adrenoceptor gene expression are higher in basal-type rather than oestrogen receptor-positive cancer cells. Norepinephrine (NE) treatment increased invasive capacity in all cell lines but did not increase proliferation/survival. Protein profiling revealed the upregulation of the pro-metastatic gene Ly6/PLAUR Domain-Containing Protein 3 (LYPD3) in norepinephrine-treated MDA-MB-468 cells. Histology confirmed selective LYPD3 expression in primary and metastatic breast tumour samples. These findings demonstrate that basal-type cancer cells show a more aggressive adrenoceptor-β2-activated phenotype in the resting and stimulated state, which is attenuated by adrenoceptor-β2 inhibition. This study also highlights the first association between ADRβ2 signalling and LYPD3; its knockdown significantly reduced the basal and norepinephrine-induced activity of MCF-7 cells in vitro. The regulation of ADRβ2 signalling by LYPD3 and its metastasis promoting activities, reveal LYPD3 as a promising therapeutic target in the treatment of breast and other cancers.
Collapse
|
3
|
Cohen AS, Khalil FK, Welsh EA, Schabath MB, Enkemann SA, Davis A, Zhou JM, Boulware DC, Kim J, Haura EB, Morse DL. Cell-surface marker discovery for lung cancer. Oncotarget 2017; 8:113373-113402. [PMID: 29371917 PMCID: PMC5768334 DOI: 10.18632/oncotarget.23009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/11/2017] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is the leading cause of cancer deaths in the United States. Novel lung cancer targeted therapeutic and molecular imaging agents are needed to improve outcomes and enable personalized care. Since these agents typically cannot cross the plasma membrane while carrying cytotoxic payload or imaging contrast, discovery of cell-surface targets is a necessary initial step. Herein, we report the discovery and characterization of lung cancer cell-surface markers for use in development of targeted agents. To identify putative cell-surface markers, existing microarray gene expression data from patient specimens were analyzed to select markers with differential expression in lung cancer compared to normal lung. Greater than 200 putative cell-surface markers were identified as being overexpressed in lung cancers. Ten cell-surface markers (CA9, CA12, CXorf61, DSG3, FAT2, GPR87, KISS1R, LYPD3, SLC7A11 and TMPRSS4) were selected based on differential mRNA expression in lung tumors vs. non-neoplastic lung samples and other normal tissues, and other considerations involving known biology and targeting moieties. Protein expression was confirmed by immunohistochemistry (IHC) staining and scoring of patient tumor and normal tissue samples. As further validation, marker expression was determined in lung cancer cell lines using microarray data and Kaplan–Meier survival analyses were performed for each of the markers using patient clinical data. High expression for six of the markers (CA9, CA12, CXorf61, GPR87, LYPD3, and SLC7A11) was significantly associated with worse survival. These markers should be useful for the development of novel targeted imaging probes or therapeutics for use in personalized care of lung cancer patients.
Collapse
Affiliation(s)
- Allison S Cohen
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Farah K Khalil
- Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Eric A Welsh
- Biomedical Informatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Matthew B Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Steven A Enkemann
- Molecular Genomics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrea Davis
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jun-Min Zhou
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David C Boulware
- Biostatistics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - David L Morse
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.,Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL, USA.,Department of Physics, College of Arts and Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
4
|
Expression of C4.4A in an In Vitro Human Tissue-Engineered Skin Model. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2403072. [PMID: 29075641 PMCID: PMC5610857 DOI: 10.1155/2017/2403072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
A multi-LU-domain-containing protein denoted C4.4A exhibits a tightly regulated membrane-associated expression in the suprabasal layers of stratified squamous epithelia such as skin and the esophagus, and the expression of C4.4A is dysregulated in various pathological conditions. However, the biological function of C4.4A remains unknown. To enable further studies, we evaluated the expression of C4.4A in monolayer cultures of normal human keratinocytes and in tissue-engineered skin substitutes (TESs) produced by the self-assembly approach, which allow the formation of a fully differentiated epidermis tissue. Results showed that, in monolayer, C4.4A was highly expressed in the centre of keratinocyte colonies at cell-cell contacts areas, while some cells located at the periphery presented little C4.4A expression. In TES, emergence of C4.4A expression coincided with the formation of the stratum spinosum. After the creation of a wound within the TES, C4.4A expression was observed in the suprabasal keratinocytes of the migrating epithelium, with the exception of the foremost leading keratinocytes, which were negative for C4.4A. Our results are consistent with previous data in mouse embryogenesis and wound healing. Based on these findings, we conclude that this human TES model provides an excellent surrogate for studies of C4.4A and Haldisin expressions in human stratified epithelia.
Collapse
|
5
|
Görtz M, Galli U, Longerich T, Zöller M, Erb U, Schemmer P. De novo synthesis of C4.4A in hepatocellular carcinoma promotes migration and invasion of tumor cells. Oncol Rep 2017; 38:2697-2704. [PMID: 29048672 PMCID: PMC5780022 DOI: 10.3892/or.2017.5980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 08/31/2017] [Indexed: 01/12/2023] Open
Abstract
C4.4A is a glycoprotein that is upregulated in several human malignancies, including colorectal, breast and renal cell carcinomas. Due to its highly restricted expression in healthy tissue, C4.4A was proposed as a potential diagnostic marker. Thus, the present study was designed to evaluate C4.4A expression and function in hepatocellular carcinoma (HCC) for the first time. Immunohistochemistry was performed to detect expression of C4.4A in human sections of healthy liver, primary HCC in the liver and metastatic HCC in the lung. To assess the contribution of C4.4A to HCC progression proliferation, apoptosis, migration and invasion assays were performed with C4.4A knockdown Huh7 and HepG2 cells. C4.4A is absent in healthy liver tissue. However, intense expression was seen in 59% of primary HCCs and strong expression in 80% of HCC lung metastases. C4.4A expression was also observed in human HCC cell lines, which strongly increased under hypoxic conditions. A C4.4A knock-down revealed that C4.4A is involved in both migration and invasion of HCC cells. Taken together, C4.4A expression in both primary and metastatic HCC suggests its potential value as a diagnostic marker for HCC. Due to its absence in healthy liver tissue, C4.4A might even serve as a possible therapeutic target, particularly for metastatic HCC.
Collapse
Affiliation(s)
- Magdalena Görtz
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Uwe Galli
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Margot Zöller
- Tumor Cell Biology, Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ulrike Erb
- Tumor Cell Biology, Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schemmer
- Department of General and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
6
|
Liu JF, Mao L, Bu LL, Ma SR, Huang CF, Zhang WF, Sun ZJ. C4.4A as a biomarker of head and neck squamous cell carcinoma and correlated with epithelial mesenchymal transition. Am J Cancer Res 2015; 5:3505-3515. [PMID: 26885441 PMCID: PMC4731626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023] Open
Abstract
C4.4A, a member of the Ly6/uPAR family of membrane proteins, has been identified as a metastasis-associated molecule, but little is known about its actual expression and possible function in head and neck squamous cell carcinoma (HNSCC). To explore diagnostic and prognostic roles of C4.4A in HNSCC, we investigated the expression of C4.4A in human HNSCC tissue array which contains 43 HNSCC, 6 epithelial dysplasia and 16 normal oral mucosa. Expression of C4.4A was significantly increased in epithelial dysplasia and HNSCC when compared with normal oral mucosa. Moreover, high C4.4A expression indicated a rather poor prognosis of HNSCC patients. To better understand the function of C4.4A in HNSCC progression, we investigated epithelial to mesenchymal transition (EMT) associated proteins including transforming growth factor (TGF-β1), Slug and CD147 in HNSCC. The expression of TGF-β1, Slug, and CD147 was significantly increased in HNSCC when compared with normal oral mucosa. Meanwhile, the expression of C4.4A was significantly correlated with TGF-β1, Slug, and CD147 in HNSCC tissue array. Furthermore, knockdown of C4.4A decreased the cell invasion and migration in CAL27 cell line and suppressed the EMT with increased E-cadherin and decreased N-cadherin and Slug. Our study demonstrated that C4.4A was a potential marker for prognosis of HNSCC, and C4.4A participated in EMT program in HNSCC progression.
Collapse
Affiliation(s)
- Jian-Feng Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Si-Rui Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Wen-Feng Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School and Hospital of Stomatology, Wuhan UniversityWuhan 430079, China
| |
Collapse
|
7
|
Etokebe GE, Zienolddiny S, Kupanovac Z, Enersen M, Balen S, Flego V, Bulat-Kardum L, Radojčić-Badovinac A, Skaug V, Bakke P, Haugen A, Dembic Z. Association of the FAM46A gene VNTRs and BAG6 rs3117582 SNP with non small cell lung cancer (NSCLC) in Croatian and Norwegian populations. PLoS One 2015; 10:e0122651. [PMID: 25884493 PMCID: PMC4401550 DOI: 10.1371/journal.pone.0122651] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
We analyzed for associations between a variable number of tandem repeat (VNTR) polymorphism in the Family with sequence similarity 46, member A (FAM46A) gene and a single nucleotide polymorphism (rs3117582) in the BCL2-Associated Athanogene 6 (BAG6) with non small cell lung cancer in Croatian and Norwegian subjects. A total of 503 (262 Croatian and 241Norwegian) non small cell lung cancer patients and 897 controls (568 Croatian and 329 Norwegian) were analyzed. We found that the frequency of allele b (three VNTR repeats) of FAM46A gene was significantly increased in the patients compared to the healthy controls in the Croatian and the combined Croatian and Norwegian subjects. Genotype frequencies of cd (four and five VNTR repeats) and cc (four VNTR repeats homozygote) of the FAM46A gene were significantly decreased in the patients compared to the healthy controls in the Croatian and Norwegian subjects, respectively. Logistic regression analyses revealed FAM46A genotype cc to be an independent predictive factor for non small cell lung cancer risk in the Norwegian subjects after adjustment for age, gender and smoking status. This is the first study to suggest an association between the FAM46A gene VNTR polymorphisms and non small cell lung cancer. We found also that BAG6 rs3117582 SNP was associated with non small cell lung cancer in the Norwegian subjects and the combined Croatian-Norwegian subjects corroborating the earlier finding that BAG6 rs3117582 SNP was associated with lung cancer in Europeans. Logistic regression analyses revealed that genotypes and alleles of BAG6 were independent predictive factor for non small cell lung cancer risk in the Norwegian and combined Croatian-Norwegian subjects, after adjustment for age and gender.
Collapse
Affiliation(s)
- Godfrey Essien Etokebe
- Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- * E-mail:
| | - Shanbeh Zienolddiny
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Zeljko Kupanovac
- Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
- Section of Pulmology, Department of Internal Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia
| | - Morten Enersen
- Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sanja Balen
- Institute for Transfusion Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia
| | - Veljko Flego
- Section of Pulmology, Department of Internal Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia
| | - Ljiljana Bulat-Kardum
- Section of Pulmology, Department of Internal Medicine, Clinical Hospital Center, University of Rijeka, Rijeka, Croatia
| | | | - Vidar Skaug
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Per Bakke
- Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Aage Haugen
- Department of Chemical and Biological Working Environment, National Institute of Occupational Health, Oslo, Norway
| | - Zlatko Dembic
- Institute for Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| |
Collapse
|