1
|
Neagu AN, Josan CL, Jayaweera TM, Morrissiey H, Johnson KR, Darie CC. Bio-Pathological Functions of Posttranslational Modifications of Histological Biomarkers in Breast Cancer. Molecules 2024; 29:4156. [PMID: 39275004 PMCID: PMC11397409 DOI: 10.3390/molecules29174156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Proteins are the most common types of biomarkers used in breast cancer (BC) theranostics and management. By definition, a biomarker must be a relevant, objective, stable, and quantifiable biomolecule or other parameter, but proteins are known to exhibit the most variate and profound structural and functional variation. Thus, the proteome is highly dynamic and permanently reshaped and readapted, according to changing microenvironments, to maintain the local cell and tissue homeostasis. It is known that protein posttranslational modifications (PTMs) can affect all aspects of protein function. In this review, we focused our analysis on the different types of PTMs of histological biomarkers in BC. Thus, we analyzed the most common PTMs, including phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, palmitoylation, myristoylation, and glycosylation/sialylation/fucosylation of transcription factors, proliferation marker Ki-67, plasma membrane proteins, and histone modifications. Most of these PTMs occur in the presence of cellular stress. We emphasized that these PTMs interfere with these biomarkers maintenance, turnover and lifespan, nuclear or subcellular localization, structure and function, stabilization or inactivation, initiation or silencing of genomic and non-genomic pathways, including transcriptional activities or signaling pathways, mitosis, proteostasis, cell-cell and cell-extracellular matrix (ECM) interactions, membrane trafficking, and PPIs. Moreover, PTMs of these biomarkers orchestrate all hallmark pathways that are dysregulated in BC, playing both pro- and/or antitumoral and context-specific roles in DNA damage, repair and genomic stability, inactivation/activation of tumor-suppressor genes and oncogenes, phenotypic plasticity, epigenetic regulation of gene expression and non-mutational reprogramming, proliferative signaling, endocytosis, cell death, dysregulated TME, invasion and metastasis, including epithelial-mesenchymal/mesenchymal-epithelial transition (EMT/MET), and resistance to therapy or reversal of multidrug therapy resistance. PTMs occur in the nucleus but also at the plasma membrane and cytoplasmic level and induce biomarker translocation with opposite effects. Analysis of protein PTMs allows for the discovery and validation of new biomarkers in BC, mainly for early diagnosis, like extracellular vesicle glycosylation, which may be considered as a potential source of circulating cancer biomarkers.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Hailey Morrissiey
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Kaya R. Johnson
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (H.M.); (K.R.J.)
| |
Collapse
|
2
|
Deng X, Wang J, Lu C, Zhou Y, Shen L, Ge A, Fan H, Liu L. Updating the therapeutic role of ginsenosides in breast cancer: a bibliometrics study to an in-depth review. Front Pharmacol 2023; 14:1226629. [PMID: 37818185 PMCID: PMC10560733 DOI: 10.3389/fphar.2023.1226629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023] Open
Abstract
Breast cancer is currently the most common malignancy and has a high mortality rate. Ginsenosides, the primary bioactive constituents of ginseng, have been shown to be highly effective against breast cancer both in vitro and in vivo. This study aims to comprehensively understand the mechanisms underlying the antineoplastic effects of ginsenosides on breast cancer. Through meticulous bibliometric analysis and an exhaustive review of pertinent research, we explore and summarize the mechanism of action of ginsenosides in treating breast cancer, including inducing apoptosis, autophagy, inhibiting epithelial-mesenchymal transition and metastasis, and regulating miRNA and lncRNA. This scholarly endeavor not only provides novel prospects for the application of ginsenosides in the treatment of breast cancer but also suggests future research directions for researchers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongqiao Fan
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
3
|
The unfolded protein response (UPR) pathway: the unsung hero in breast cancer management. Apoptosis 2022; 28:263-276. [PMID: 36536258 DOI: 10.1007/s10495-022-01803-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Tumor cells always have the need to produce an increased amount of proteins in the cells. This elevated amount of proteins increases the pressure on the organelles of the cell such as the endoplasmic reticulum and compels it to increase its protein folding efficiency. However, it is by a matter of fact, that the amount of proteins synthesized outweighs the protein folding capacity of the ER which in turn switches on the UPR pathway by activating the three major molecular sensors and other signaling cascades, which helps in cell survival instead of instant death. However, if this pathway is active for a prolonged period of time the tumor cells heads toward apoptosis. Again, interestingly this is not the same as in case of non- tumorogenic cells. This exhibit a straight natural pathway for tumor cells-specific destruction which has a great implication in today's world where hormone therapies and chemo-therapies are non-effective for various types of breast cancer, a major type being Triple Negative Breast Cancer. Thus a detailed elucidation of the molecular involvement of the UPR pathway in breast cancer may open new avenues for management and attract novel chemotherapeutic targets providing better hopes to patients worldwide.
Collapse
|
4
|
Strillacci A, Sansone P, Rajasekhar VK, Turkekul M, Boyko V, Meng F, Houck-Loomis B, Brown D, Berger MF, Hendrickson RC, Chang Q, de Stanchina E, Pareja F, Reis-Filho JS, Rajappachetty RS, Del Priore I, Liu B, Cai Y, Penson A, Mastroleo C, Berishaj M, Borsetti F, Spisni E, Lyden D, Chandarlapaty S, Bromberg J. ERα-LBD, an isoform of estrogen receptor alpha, promotes breast cancer proliferation and endocrine resistance. NPJ Breast Cancer 2022; 8:96. [PMID: 35999225 PMCID: PMC9399095 DOI: 10.1038/s41523-022-00470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/26/2022] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα) drives mammary gland development and breast cancer (BC) growth through an evolutionarily conserved linkage of DNA binding and hormone activation functions. Therapeutic targeting of the hormone binding pocket is a widely utilized and successful strategy for breast cancer prevention and treatment. However, resistance to this endocrine therapy is frequently encountered and may occur through bypass or reactivation of ER-regulated transcriptional programs. We now identify the induction of an ERα isoform, ERα-LBD, that is encoded by an alternative ESR1 transcript and lacks the activation function and DNA binding domains. Despite lacking the transcriptional activity, ERα-LBD is found to promote breast cancer growth and resistance to the ERα antagonist fulvestrant. ERα-LBD is predominantly localized to the cytoplasm and mitochondria of BC cells and leads to enhanced glycolysis, respiration and stem-like features. Intriguingly, ERα-LBD expression and function does not appear to be restricted to cancers that express full length ERα but also promotes growth of triple-negative breast cancers and ERα-LBD transcript (ESR1-LBD) is also present in BC samples from both ERα(+) and ERα(-) human tumors. These findings point to ERα-LBD as a potential mediator of breast cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Antonio Strillacci
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Pasquale Sansone
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Children's Cancer and Blood Foundation Laboratories, Weill Cornell Medicine, New York, NY, USA
| | | | - Mesruh Turkekul
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vitaly Boyko
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fanli Meng
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian Houck-Loomis
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Brown
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qing Chang
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ramya Segu Rajappachetty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabella Del Priore
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bo Liu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yanyan Cai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chiara Mastroleo
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marjan Berishaj
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francesca Borsetti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Enzo Spisni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Weill Cornell Medicine, New York, NY, USA
| | - Sarat Chandarlapaty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jacqueline Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Macías-Silva M, Sosa-Garrocho M, López-Camarillo C. Novel Breast Cancer Treatment by Targeting Estrogen Receptor-Alpha Stability Using Proteolysis-Targeting Chimeras (PROTACs) Technology. Breast Cancer 2022. [DOI: 10.36255/exon-publications-breast-cancer-protacs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Sereda EE, Kolegova ES, Kakurina GV, Korshunov DA, Sidenko EA, Doroshenko AV, Slonimskaya EM, Kondakova IV. Five-year survival in luminal breast cancer patients: relation with intratumoral activity of proteasomes. TRANSLATIONAL BREAST CANCER RESEARCH : A JOURNAL FOCUSING ON TRANSLATIONAL RESEARCH IN BREAST CANCER 2022; 3:23. [PMID: 38751528 PMCID: PMC11093047 DOI: 10.21037/tbcr-22-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/14/2022] [Indexed: 05/18/2024]
Abstract
Background The purpose of the study was to analyze the relationship between the caspase-like (CL) and chymotrypsin-like (ChTL) activities of proteasomes and the 5-year overall and metastasis-free survival rates in patients with luminal breast cancer. Methods The study included 117 patients with primary operable invasive breast cancer (T1-2N0-1M0). Tissue samples from breast cancer patients were obtained as a result of the radical mastectomy or breast conserving surgery, which was a first line of therapy. The ChTL and CL proteasomes activities in the tumor tissue and in the surrounding adjacent breast tissues were assessed using the fluorometric method. The coefficients of ChTL (cChTL) and CL (cCL) proteasomes activities were also determined. The coefficients were calculated as the ratio of the corresponding proteasomes activity in the tumor tissue to the surrounding adjacent breast tissues. Within 5 years of follow-up, hematogenous metastases occurred in 14% of patients with luminal A breast cancer, in 31% of patients with luminal B human epidermal growth factor receptor-2 (HER-2) negative and in 23% of patients with luminal B HER-2 positive breast cancers. The study protocol was approved by the Local Ethics Committee of the Cancer Research Institute of Tomsk National Research Medical Center. Written informed consent was obtained from all patients. Results An increase in the ChTL and CL proteasomes activities was shown in all studied molecular subtypes of breast cancer compared to adjacent tissues. It was found that the cChTL of >35.9 U/mg protein and the cCL of >2.21 in breast cancer patients were associated with the development of distant metastases. In patients with luminal A breast cancer, the 5-year metastasis-free survival rates were associated only with the value of cCL of proteasomes (log-rank test: P=0.008). In patients with luminal B HER-2 negative breast cancer, the 5-year metastasis-free survival rates were associated with the levels of ChTL and cCL proteasomes activities (log-rank test: P=0.02 and P=0.04, respectively). Conclusions The data obtained on the correlation of 5-year metastasis-free survival rates with the level of proteasomes activities indicate the possibility of their use as additional prognostic criteria for breast cancer.
Collapse
Affiliation(s)
- Elena E. Sereda
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk, Russia
| | - Elena. S. Kolegova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Gelena V. Kakurina
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Biology, Siberian State Medical University, Tomsk, Russia
| | - Dmitriy A. Korshunov
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Evgenia A. Sidenko
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Artem V. Doroshenko
- General Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Elena M. Slonimskaya
- General Oncology Department, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Irina V. Kondakova
- Laboratory of Tumor Biochemistry, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
7
|
Calcineurin regulates the stability and activity of estrogen receptor α. Proc Natl Acad Sci U S A 2021; 118:2114258118. [PMID: 34711683 DOI: 10.1073/pnas.2114258118] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Estrogen receptor α (ER-α) mediates estrogen-dependent cancer progression and is expressed in most breast cancer cells. However, the molecular mechanisms underlying the regulation of the cellular abundance and activity of ER-α remain unclear. We here show that the protein phosphatase calcineurin regulates both ER-α stability and activity in human breast cancer cells. Calcineurin depletion or inhibition down-regulated the abundance of ER-α by promoting its polyubiquitination and degradation. Calcineurin inhibition also promoted the binding of ER-α to the E3 ubiquitin ligase E6AP, and calcineurin mediated the dephosphorylation of ER-α at Ser294 in vitro. Moreover, the ER-α (S294A) mutant was more stable and activated the expression of ER-α target genes to a greater extent compared with the wild-type protein, whereas the extents of its interaction with E6AP and polyubiquitination were attenuated. These results suggest that the phosphorylation of ER-α at Ser294 promotes its binding to E6AP and consequent degradation. Calcineurin was also found to be required for the phosphorylation of ER-α at Ser118 by mechanistic target of rapamycin complex 1 and the consequent activation of ER-α in response to β-estradiol treatment. Our study thus indicates that calcineurin controls both the stability and activity of ER-α by regulating its phosphorylation at Ser294 and Ser118 Finally, the expression of the calcineurin A-α gene (PPP3CA) was associated with poor prognosis in ER-α-positive breast cancer patients treated with tamoxifen or other endocrine therapeutic agents. Calcineurin is thus a promising target for the development of therapies for ER-α-positive breast cancer.
Collapse
|
8
|
Afrin S, El Sabeh M, Islam MS, Miyashita-Ishiwata M, Malik M, Catherino WH, Akimzhanov AM, Boehning D, Yang Q, Al-Hendy A, Segars JH, Borahay MA. Simvastatin modulates estrogen signaling in uterine leiomyoma via regulating receptor palmitoylation, trafficking and degradation. Pharmacol Res 2021; 172:105856. [PMID: 34461224 PMCID: PMC8455458 DOI: 10.1016/j.phrs.2021.105856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022]
Abstract
Uterine leiomyomas or fibroids are the most common tumors of the female reproductive tract. Estrogen (E2), a steroid-derived hormone, and its receptors (ERs), particularly ER-α, are important drivers for the development and growth of leiomyomas. We previously demonstrated that simvastatin, a drug used for hyperlipidemia, also possesses anti-leiomyoma properties. The aim of this work is to investigate the impact of simvastatin on ER-α signaling in leiomyoma cells, including its expression, downstream signaling, transcriptional activity, post-translational modification, trafficking and degradation. Primary and immortalized human uterine leiomyoma (HuLM) cells were used for in vitro experiments. Immunodeficient mice xenografted with human leiomyoma tissue explants were used for in vivo studies. Leiomyoma samples were obtained from patients enrolled in an ongoing double-blinded, phase II, randomized controlled trial. Here, we found that simvastatin significantly reduced E2-induced proliferation and PCNA expression. In addition, simvastatin reduced total ER-α expression in leiomyoma cells and altered its subcellular localization by inhibiting its trafficking to the plasma membrane and nucleus. Simvastatin also inhibited E2 downstream signaling, including ERK and AKT pathways, E2/ER transcriptional activity and E2-responsive genes. To explain simvastatin effects on ER-α level and trafficking, we examined its effects on ER-α post-translational processing. We noticed that simvastatin reduced ER-α palmitoylation; a required modification for its stability, trafficking to plasma membrane, and signaling. We also observed an increase in ubiquitin-mediated ER-α degradation. Importantly, we found that the effects of simvastatin on ER-α expression were recapitulated in the xenograft leiomyoma mouse model and human tissues. Thus, our data suggest that simvastatin modulates several E2/ER signaling targets with potential implications in leiomyoma therapy and beyond.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Minnie Malik
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - William H Catherino
- Department of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Darren Boehning
- Cooper Medical School of Rowan University, 401 Broadway, Camden, NJ 08103, USA
| | - Qiwei Yang
- Department of Gynecology and Obstetrics, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - Ayman Al-Hendy
- Department of Gynecology and Obstetrics, University of Chicago School of Medicine, Chicago, IL 60637, USA
| | - James H Segars
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
9
|
Tecalco-Cruz AC, Abraham-Juárez MJ, Solleiro-Villavicencio H, Ramírez-Jarquín JO. TRIM25: A central factor in breast cancer. World J Clin Oncol 2021; 12:646-655. [PMID: 34513598 PMCID: PMC8394156 DOI: 10.5306/wjco.v12.i8.646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023] Open
Abstract
TRIM25 is emerging as a central factor in breast cancer due to its regulation and function. In particular, it has been shown that: (1) Estrogens modulate TRIM25 gene expression; (2) TRIM25 has activity as an E3-ligase enzyme for ubiquitin; and (3) TRIM25 is also an E3 ligase for interferon-stimulated gene 15 protein in the ISGylation system. Consequently, the proteome of mammary tissue is affected by TRIM25-associated pathways, involved in tumor development and metastasis. Here, we discuss the findings on the mechanisms involved in regulating TRIM25 expression and its functional relevance in breast cancer progression. These studies suggest that TRIM25 may be a biomarker and a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico 03100, Mexico
| | - María Jazmin Abraham-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36821, Mexico
| | | | | |
Collapse
|
10
|
Pathological Maintenance and Evolution of Breast Cancer: The Convergence of Irreversible Biological Actions of ER Alpha. ENDOCRINES 2020. [DOI: 10.3390/endocrines2010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Estrogen receptor alpha (ERα) is a modulator of breast cancer maintenance and evolution. Hence, analysis of underlying mechanisms by which ERα operates is of importance for the improvement of the hormonal therapy of the disease. This review focuses on the irreversible character of the mechanism of action of ERα, which also concerns other members of the steroid hormones receptors family. ERα moves in permanence between targets localized especially at the chromatin level to accomplish gene transcriptions imposed by the estrogenic ligands and specific antagonists. Receptor association as at the plasma membrane, where it interacts with other recruitment sites, extends its regulatory potency to growth factors and related peptides through activation of signal transductions pathways. If the latter procedure is suitable for the transcriptions in which the receptor operates as a coregulator of another transcription factor, it is of marginal influence with regard to the direct estrogenic regulation procedure, especially in the context of the present review. Irreversibility of the successive steps of the underlying transcription cycle guarantees maintenance of homeostasis and evolution according to vital necessities. To justify this statement, reported data are essentially described in a holistic view rather than in the context of exhaustive analysis of a molecular event contributing to a specific function as well as in a complementary perspective to elaborate new therapeutic approaches with antagonistic potencies against those tumors promoting ERα properties.
Collapse
|
11
|
Jeffreys SA, Powter B, Balakrishnar B, Mok K, Soon P, Franken A, Neubauer H, de Souza P, Becker TM. Endocrine Resistance in Breast Cancer: The Role of Estrogen Receptor Stability. Cells 2020; 9:cells9092077. [PMID: 32932819 PMCID: PMC7564140 DOI: 10.3390/cells9092077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Therapy of hormone receptor positive breast cancer (BCa) generally targets estrogen receptor (ER) function and signaling by reducing estrogen production or by blocking its interaction with the ER. Despite good long-term responses, resistance to treatment remains a significant issue, with approximately 40% of BCa patients developing resistance to ET. Mutations in the gene encoding ERα, ESR1, have been identified in BCa patients and are implicated as drivers of resistance and disease recurrence. Understanding the molecular consequences of these mutations on ER protein levels and its activity, which is tightly regulated, is vital. ER activity is in part controlled via its short protein half-life and therefore changes to its stability, either through mutations or alterations in pathways involved in protein stability, may play a role in therapy resistance. Understanding these connections and how ESR1 alterations could affect protein stability may identify novel biomarkers of resistance. This review explores the current reported data regarding posttranslational modifications (PTMs) of the ER and the potential impact of known resistance associated ESR1 mutations on ER regulation by affecting these PTMs in the context of ET resistance.
Collapse
Affiliation(s)
- Sarah A. Jeffreys
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- Correspondence: ; Tel.: +61-2-873-89022
| | - Branka Powter
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
| | - Bavanthi Balakrishnar
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
| | - Kelly Mok
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
| | - Patsy Soon
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
- Department of Surgery, Bankstown Hospital, Bankstown NSW 2200, Australia
| | - André Franken
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Hans Neubauer
- Department of Obstetrics and Gynaecology, University Hospital and Medical Faculty of the Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Paul de Souza
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool NSW 2170, Australia; (B.B.); (K.M.)
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
- School of Medicine, University of Wollongong, Wollongong NSW 2522, Australia
| | - Therese M. Becker
- Centre for Circulating Tumour Cells Diagnostics & Research, Ingham Institute of Applied Medical Research, Liverpool NSW 2170, Australia; (B.P.); (P.S.); (A.F.); (P.d.S.); (T.M.B.)
- School of Medicine, Western Sydney University, Campbelltown NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool Hospital, Liverpool NSW 2170, Australia
| |
Collapse
|
12
|
Sreekumar S, Levine KM, Sikora MJ, Chen J, Tasdemir N, Carter D, Dabbs DJ, Meier C, Basudan A, Boone D, McAuliffe PF, Jankowitz RC, Lee AV, Atkinson JM, Oesterreich S. Differential Regulation and Targeting of Estrogen Receptor α Turnover in Invasive Lobular Breast Carcinoma. Endocrinology 2020; 161:bqaa109. [PMID: 32609836 PMCID: PMC7438704 DOI: 10.1210/endocr/bqaa109] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 06/27/2020] [Indexed: 02/08/2023]
Abstract
Invasive lobular breast carcinoma (ILC) accounts for 10% to 15% of breast cancers diagnosed annually. Evidence suggests that some aspects of endocrine treatment response might differ between invasive ductal carcinoma (IDC) and ILC, and that patients with ILC have worse long-term survival. We analyzed The Cancer Genome Atlas dataset and observed lower levels of ESR1 mRNA (P = 0.002) and ERα protein (P = 0.038) in ER+ ILC (n = 137) compared to IDC (n = 554), and further confirmed the mRNA difference in a local UPMC cohort (ILC, n = 143; IDC, n = 877; P < 0.005). In both datasets, the correlation between ESR1 mRNA and ERα protein was weaker in ILC, suggesting differential post-transcriptional regulation of ERα. In vitro, 17β-estradiol (E2) decreased the rate of degradation and increased the half-life of ERα in ILC cell lines, whereas the opposite was observed in IDC cell lines. Further, E2 failed to induce robust ubiquitination of ERα in ILC cells. To determine the potential clinical relevance of these findings, we evaluated the effect of 2 selective estrogen receptor downregulators (SERDs), ICI 182,780 and AZD9496, on ERα turnover and cell growth. While ICI 182,780 and AZD9496 showed similar effects in IDC cells, in ILC cell lines, AZD9496 was not as effective as ICI 182,780 in decreasing ERα stability and E2-induced proliferation. Furthermore, AZD9496 exhibited partial agonist activity in growth assays in ILC cell lines. Our study provides evidence for a distinct ERα regulation by SERDs in ILC cell lines, and therefore it is important to include ILC models into preclinical and clinical testing of novel SERDs.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/metabolism
- Carcinoma, Lobular/pathology
- Cell Line, Tumor
- Estradiol/pharmacology
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- MCF-7 Cells
- Neoplasm Invasiveness
- Protein Processing, Post-Translational/drug effects
- Proteolysis/drug effects
- Ubiquitination/drug effects
Collapse
Affiliation(s)
- Sreeja Sreekumar
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin M Levine
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Medicine, University of Washington, Seattle, Washington DC
| | - Matthew J Sikora
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jian Chen
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
| | - Nilgun Tasdemir
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Dorothy Carter
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David J Dabbs
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carolin Meier
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Technische Universität, Dresden, Germany
| | - Ahmed Basudan
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Clinical Laboratory Sciences, King Saud University, Riyadh, Saudi Arabia
| | - David Boone
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Priscilla F McAuliffe
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Division of Surgical Oncology, Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Rachel C Jankowitz
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Division of Medical Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Department of Medicine, Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, Philadelphia, Pennsylvania
| | - Adrian V Lee
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer M Atkinson
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steffi Oesterreich
- Women’s Cancer Research Center, UPMC Hillman Cancer Center, Magee Womens Research Institute, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Bai JW, Wei M, Li JW, Zhang GJ. Notch Signaling Pathway and Endocrine Resistance in Breast Cancer. Front Pharmacol 2020; 11:924. [PMID: 32636747 PMCID: PMC7318302 DOI: 10.3389/fphar.2020.00924] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Nearly 70% of breast cancers express the estrogen receptor (ER) and are hormone-dependent for cell proliferation and survival. Anti-estrogen therapies with aromatase inhibitors (AIs), selective estrogen receptor modulators (SERMs) or selective estrogen receptor down regulators (SERDs) are the standard endocrine therapy approach for ER positive breast cancer patients. However, about 30% of patients receiving endocrine therapy will progress during the therapy or become endocrine resistance eventually. The intrinsic or acquired endocrine resistance has become a major obstacle for endocrine therapy. The mechanism of endocrine resistance is very complicated and recently emerging evidence indicates dysregulation of Notch signaling pathway contributes to endocrine resistance in breast cancer patients. The potential mechanisms include regulation of ER, promotion of cancer stem cell (CSC) phenotype and mesenchymal cell ratio, alteration of the local tumor microenvironment and cell cycle. This review will summarize the latest progress on the investigation of Notch signaling pathway in breast cancer endocrine resistance.
Collapse
Affiliation(s)
- Jing-Wen Bai
- Department of Oncology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Min Wei
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ji-Wei Li
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Guo-Jun Zhang
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
14
|
Xue M, Zhang K, Mu K, Xu J, Yang H, Liu Y, Wang B, Wang Z, Li Z, Kong Q, Li X, Wang H, Zhu J, Zhuang T. Regulation of estrogen signaling and breast cancer proliferation by an ubiquitin ligase TRIM56. Oncogenesis 2019; 8:30. [PMID: 31000690 PMCID: PMC6473003 DOI: 10.1038/s41389-019-0139-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 11/13/2022] Open
Abstract
Breast cancer ranks no. 1 in women cancer worldwide, while 60–70% are estrogen receptor alpha positive. The estrogen selective modulators, such as tamoxifen, become the effective drugs for controlling ER alpha breast cancer progression. However, tamoxifen resistance will develop during long-time treatment and cancer progression. Thus, further understanding of ER alpha signaling becomes necessary for the improvement of breast cancer therapy. Here, we identify TRIM56 as a novel regulatory factor in ER alpha signaling. TRIM56 expression is positively correlated with ER alpha and PR in breast cancer samples and is related to poor prognosis in endocrine therapy patients. TRIM56 depletion significantly decreases ER alpha signaling activity and ER-alpha-positive breast cancer proliferation in vitro and in vivo. TRIM56 associates with AF1 domain of ER alpha via its WD40 domain in the cytoplasm. TRIM56 prolongs ER alpha protein stability, possibly through targeting ER alpha K63-linked ubiquitination. In conclusion, our study reveals an interesting posttranslational mechanism between TRIM56 and ER alpha in breast cancer progression. Targeting TRIM56 could be a promising approach for ER-alpha-positive breast cancer.
Collapse
Affiliation(s)
- Min Xue
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Kai Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, Jinan, Shandong, P.R. China
| | - Kun Mu
- Department of Pathology, School of Basic Medical Sciences, Shandong University, 250012, Jinan, Shandong, P.R. China
| | - Juntao Xu
- Rhil Rivers Technology (Beijing) Ltd, Beijing, P.R. China.,Department of Cancer Genomics, LemonData Biotech (Shenzhen), Shenzhen, P.R. China
| | - Huijie Yang
- Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, 22 Qixiangtai Road, Heping District, 300070, Tianjin, P.R. China
| | - Yun Liu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Beibei Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Zhonghao Wang
- School of Stomatology, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Zhongbo Li
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Qiong Kong
- School of International Education, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Xiumin Li
- Department of Gastroenterology, The Third Affiliated Hospital of Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China.
| | - Jian Zhu
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China. .,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ting Zhuang
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, 453003, Xinxiang, Henan, P.R. China.
| |
Collapse
|
15
|
Tecalco-Cruz AC, Ramírez-Jarquín JO, Cruz-Ramos E. Estrogen Receptor Alpha and its Ubiquitination in Breast Cancer Cells. Curr Drug Targets 2019; 20:690-704. [DOI: 10.2174/1389450119666181015114041] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/23/2022]
Abstract
More than 70% of all breast cancer cases are estrogen receptor alpha-positive (ERα). ERα is a member of the nuclear receptor family, and its activity is implicated in the gene transcription linked to the proliferation of breast cancer cells, as well as in extranuclear signaling pathways related to the development of resistance to endocrine therapy. Protein-protein interactions and posttranslational modifications of ERα underlie critical mechanisms that modulate its activity. In this review, the relationship between ERα and ubiquitin protein (Ub), was investigated in the context of breast cancer cells. Interestingly, Ub can bind covalently or non-covalently to ERα resulting in either a proteolytic or non-proteolytic fate for this receptor. Thereby, Ub-dependent molecular pathways that modulate ERα signaling may play a central role in breast cancer progression, and consequently, present critical targets for treatment of this disease.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Josué O. Ramírez-Jarquín
- Instituto de Fisiologia Celular. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| | - Eduardo Cruz-Ramos
- Instituto de Investigaciones Biomedicas. Universidad Nacional Autonoma de Mexico. Mexico City, 04510, Mexico
| |
Collapse
|