1
|
Costello LF, McMenamin PG, Quayle MR, Bertram JF, Adams JW. Applying 3D surface scanning technology to create photorealistic three-dimensional printed replicas of human anatomy. Future Sci OA 2024; 10:2381956. [PMID: 39135497 PMCID: PMC11323862 DOI: 10.1080/20565623.2024.2381956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Aim: To describe advances in 3D data capture and printing that allow photorealistic replicas of human anatomical specimens for education and research, and discuss advantages of current generation printing for replica design and manufacture. Materials & methods: We combine surface scanning and computerized tomography datasets that maximize precise color and geometric capture with ultra violet (UV) curable resin printing to replicate human anatomical specimens. Results: We describe the process for color control, print design and translation of photorealistic 3D meshes into 3D prints in durable resins. Conclusion: Current technologies allow previously unachievable ability to capture and reproduce anatomical specimens, and provide a platform for a new generation of 3D printed teaching materials to be designed and used in anatomy education environments.
Collapse
Affiliation(s)
- Lucy F Costello
- Centre for Human Anatomy Education, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Paul G McMenamin
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Michelle R Quayle
- Centre for Human Anatomy Education, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - John F Bertram
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Justin W Adams
- Centre for Human Anatomy Education, Department of Anatomy & Developmental Biology, Monash University, Clayton, Victoria, 3800, Australia
- Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- Geosciences, Museums Victoria, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
2
|
Msallem B, Vavrina JJ, Beyer M, Halbeisen FS, Lauer G, Dragu A, Thieringer FM. Dimensional Accuracy in 3D Printed Medical Models: A Follow-Up Study on SLA and SLS Technology. J Clin Med 2024; 13:5848. [PMID: 39407907 PMCID: PMC11477136 DOI: 10.3390/jcm13195848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/20/2024] Open
Abstract
Background: With the rise of new 3D printers, assessing accuracy is crucial for obtaining the best results in patient care. Previous studies have shown that the highest accuracy is achieved with SLS printing technology; however, SLA printing technology has made significant improvements in recent years. Methods: In this study, a realistic anatomical model of a mandible and skull, a cutting guide for mandibular osteotomy, and a splint for orthognathic surgery were replicated five times each using two different 3D printing technologies: SLA and SLS. Results: The SLA group had a median trueness RMS value of 0.148 mm and a precision RMS value of 0.117 mm. The SLS group had a median trueness RMS value of 0.144 mm and a precision RMS value of 0.096 mm. There was no statistically significant difference in RMS values between SLS and SLA technologies regarding trueness. Regarding precision, however, the RMS values for SLS technology were significantly lower in the splint and cutting guide applications than those printed with SLA technology. Conclusions: Both 3D printing technologies produce modern models and applications with equally high dimensional accuracy. Considering current cost pressures experienced by hospitals, the lower-cost SLA 3D printer is a reliable choice for point-of-care 3D printing.
Collapse
Affiliation(s)
- Bilal Msallem
- UniversityCenter for Orthopedics, Trauma and Plastic Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
| | - Joel J. Vavrina
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Michel Beyer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| | - Florian S. Halbeisen
- Basel Institute for Clinical Epidemiology and Biostatistics, Department of Clinical Research, University Hospital Basel, University of Basel, CH-4031 Basel, Switzerland
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
| | - Adrian Dragu
- UniversityCenter for Orthopedics, Trauma and Plastic Surgery, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, DE-01307 Dresden, Germany;
| | - Florian M. Thieringer
- Medical Additive Manufacturing Research Group, Department of Biomedical Engineering, University of Basel, CH-4123 Allschwil, Switzerland; (J.J.V.); (M.B.); (F.M.T.)
- Clinic of Oral and Cranio-Maxillofacial Surgery, University Hospital Basel, CH-4031 Basel, Switzerland
| |
Collapse
|
3
|
Mounsef PJ, Aita R, Skaik K, Addab S, Hamdy RC. Three-dimensional-printing-guided preoperative planning of upper and lower extremity pediatric orthopedic surgeries: A systematic review of surgical outcomes. J Child Orthop 2024; 18:360-371. [PMID: 39100975 PMCID: PMC11295370 DOI: 10.1177/18632521241264183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Three-dimensional printing has evolved into a cost-effective and accessible tool. In orthopedic surgery, creating patient-specific anatomical models and instrumentation improves visualization and surgical accuracy. In pediatric orthopedics, three-dimensional printing reduces operating time, radiation exposure, and blood loss by enhancing surgical efficacy. This review compares outcomes of three-dimensional printing-assisted surgeries with conventional surgeries for upper and lower extremity pediatric surgeries. Methods A complete search of medical literature up to August 2023, using Ovid Medline, EMBASE, Scopus, Web of Science, and Cochrane Library was conducted in compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Broad search terms included "pediatrics," "orthopedic," and "3D-printing." Eligible studies were assessed for intraoperative time, blood loss, and fluoroscopy exposure. Results Out of 3299 initially identified articles, 14 articles met inclusion criteria. These studies included 409 pediatric patients, with ages averaging 9.51 years. The majority were retrospective studies (nine), with four prospective and one experimental study. Studies primarily utilized three-dimensional printing for navigation templates and implants. Results showed significant reductions in operative time, blood loss, and radiation exposure with three-dimensional printing. Complication occurrences were generally lower in three-dimensional printing surgeries, but there was no statistical significance. Conclusions Three-dimensional printing is an emerging technology in the field of orthopedics, and it is primarily used for preoperative planning. For pediatric upper and lower extremity surgeries, three-dimensional printing leads to decreased operating room time, decreased intraoperative blood loss, and reduced radiation exposure. Other uses for three-dimensional printing include education, patient communication, the creation of patient-specific instrumentation and implants. Level of evidence Level III.
Collapse
Affiliation(s)
| | | | - Khaled Skaik
- Faculty of Medicine and Health Science, McGill University, Montreal, QC, Canada
| | - Sofia Addab
- Shriners Hospitals for Children – Canada, Montreal, QC, Canada
| | - Reggie Charles Hamdy
- Faculty of Medicine and Health Science, McGill University, Montreal, QC, Canada
- Shriners Hospitals for Children – Canada, Montreal, QC, Canada
| |
Collapse
|
4
|
Berhouet J, Samargandi R. Emerging Innovations in Preoperative Planning and Motion Analysis in Orthopedic Surgery. Diagnostics (Basel) 2024; 14:1321. [PMID: 39001212 PMCID: PMC11240316 DOI: 10.3390/diagnostics14131321] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
In recent years, preoperative planning has undergone significant advancements, with a dual focus: improving the accuracy of implant placement and enhancing the prediction of functional outcomes. These breakthroughs have been made possible through the development of advanced processing methods for 3D preoperative images. These methods not only offer novel visualization techniques but can also be seamlessly integrated into computer-aided design models. Additionally, the refinement of motion capture systems has played a pivotal role in this progress. These "markerless" systems are more straightforward to implement and facilitate easier data analysis. Simultaneously, the emergence of machine learning algorithms, utilizing artificial intelligence, has enabled the amalgamation of anatomical and functional data, leading to highly personalized preoperative plans for patients. The shift in preoperative planning from 2D towards 3D, from static to dynamic, is closely linked to technological advances, which will be described in this instructional review. Finally, the concept of 4D planning, encompassing periarticular soft tissues, will be introduced as a forward-looking development in the field of orthopedic surgery.
Collapse
Affiliation(s)
- Julien Berhouet
- Service de Chirurgie Orthopédique et Traumatologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, 1C Avenue de la République, 37170 Chambray-les-Tours, France
- Equipe Reconnaissance de Forme et Analyse de l'Image, Laboratoire d'Informatique Fondamentale et Appliquée de Tours EA6300, Ecole d'Ingénieurs Polytechnique Universitaire de Tours, Université de Tours, 64 Avenue Portalis, 37200 Tours, France
| | - Ramy Samargandi
- Service de Chirurgie Orthopédique et Traumatologique, Centre Hospitalier Régional Universitaire (CHRU) de Tours, 1C Avenue de la République, 37170 Chambray-les-Tours, France
- Department of Orthopedic Surgery, Faculty of Medicine, University of Jeddah, Jeddah 23218, Saudi Arabia
| |
Collapse
|
5
|
Zhao CX, Yam M. Role of patient specific 3D printed models in patient confidence, understanding and satisfaction of care in Singapore. J Orthop 2024; 52:28-32. [PMID: 38404701 PMCID: PMC10881444 DOI: 10.1016/j.jor.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Patient specific 3D models have been widely used for pre-op planning and intra-op guidance in orthopaedic surgery. These models however are not often used in pre-operative doctor-patient communication. This study evaluates the roles of customized 3D models in improving patient understanding, confidence, and satisfaction of patient care when they were used during preoperative counselling. Materials and methods A prospective survey was conducted on 33 orthopaedic trauma patients who were required to rate on a scale of 1-5, the effectiveness of patient specific 3D models in: 1) improving patient's understanding and, 2) helping patients cope with the condition, 3) boosting patients' confidence in the treatment and 4) in the surgeon; and on a scale of 0-10, their overall satisfaction. Subgroup analysis was done to compare ratings of patients by age and by education levels. Results Over 90% patients rated agree or strongly agree on customised 3D models' effectiveness in improving understanding of injury and boosting confidence in treatments and surgeons. 87% patients agreed or strongly agreed that the models enhanced patient self-efficacy. No significant correlation was identified between age and patients' perceived effectiveness of customised 3D models in improving patient care. Ratings on four areas evaluated by pre-secondary and post-secondary groups were comparable. Post-secondary group had significantly higher satisfaction level than the pre-secondary group. Conclusion Customized 3D models help patients visualise complex pathology to facilitate patients' understanding of their condition and treatment, resulting in improved self-efficacy, confidence, and overall satisfaction. The use of patient specific 3D models in pre-operative counselling allows greater patient involvement therefore prompting patient-centred healthcare. Age does not influence patients' perceived effectiveness of customised 3D models in improving patient care. Patients with higher education level are likely to experience higher satisfaction level due to their willingness to take responsibility for their care.
Collapse
Affiliation(s)
- Carol Xiaoshu Zhao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Michael Yam
- Orthopaedic Department, Tan Tock Seng Hospital, 308433, Singapore
| |
Collapse
|
6
|
Lucchino N, Pialat JB, Marquette C, Courtial E, Erhard L, Voulliaume D, Mojallal A, Gazarian A. 3D MODEL of an anatomically inert human hand: feasibility study. HAND SURGERY & REHABILITATION 2024; 43:101709. [PMID: 38685316 DOI: 10.1016/j.hansur.2024.101709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVES Surgery for congenital malformation of the hand is complex and protocols are not available. Simulation could help optimize results. The objective of the present study was to design, produce and assess a 3D-printed anatomical support, to improve success in rare and complex surgeries of the hand. MATERIAL AND METHODS We acquired MRI imaging of the right hand of a 30 year-old subject, then analyzed and split the various skin layers for segmentation. Thus we created the prototype of a healthy hand, using 3D multi-material and silicone printing devices, and drew up a printing protocol suitable for all patients. We printed a base comprising bones, muscles and tendons, with a multi-material 3D printer, then used a 3D silicone printer for skin and subcutaneous fatty cell tissues in a glove-like shape. To evaluate the characteristics of the prototype, we performed a series of dissections on the synthetic hand and on a cadaveric hand in the anatomy lab, comparing realism, ease of handling and the final result of the two supports, and evaluated their respective advantages in surgical and training contexts. A grading form was given to each surgeon to establish a global score. RESULTS This evaluation highlighted the positive and negative features of the model. The model avoided intrinsic problems of cadavers, such as muscle rigidity or tissue fragility and atrophy, and enables the anatomy of a specific patient to be rigorously respected. On the other hand, vascular and nervous networks, with their potential anatomical variants, are lacking. This preliminary phase highlighted the advantages and inconveniences of the prototype, to optimize the design and printing of future models. It is an indispensable prerequisite before performing studies in eligible pediatric patients with congenital hand malformation. CONCLUSION The validation of 3D-printed anatomical model of a human hand opens a large field of applications in the area of preoperative surgical planning. The postoperative esthetic and functional benefit of such pre-intervention supports in complex surgery needs assessing.
Collapse
Affiliation(s)
- Noé Lucchino
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Hôpital Saint Joseph Saint Luc, 20 Quai Claude Bernard, 69007 Lyon, France.
| | - Jean-Baptiste Pialat
- Department of Radiology, Groupement Hospitalier Sud, Hospices Civils de Lyon, CREATIS Université Lyon 1, CREATIS-LRMN, 69495 Pierre-Bénite, France
| | - Christophe Marquette
- 3D.FAB, Université Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France, CNRS/UMR/5220-INSERM U630, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Edwin Courtial
- 3D.FAB, Université Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 Novembre 1918, 69622, Villeurbanne Cedex, France, CNRS/UMR/5220-INSERM U630, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Lionel Erhard
- Institut Chirurgical de la Main et du Membre Supérieur, 17 Avenue Condorcet 69100 Villeurbanne, France
| | - Delphine Voulliaume
- Service de Chirurgie Plastique, Reconstructrice et Esthétique, Hôpital Saint Joseph Saint Luc, 20 Quai Claude Bernard, 69007 Lyon, France
| | - Ali Mojallal
- Department of Plastic Reconstructive and Aesthetic Surgery, University of Lyon, Université Claude Bernard Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Aram Gazarian
- Chirurgie de la Main et du Membre Supérieur, Polyclinique Orthopédique de Lyon, Lyon, France
| |
Collapse
|
7
|
Tappa K, Bird JE, Arribas EM, Santiago L. Multimodality Imaging for 3D Printing and Surgical Rehearsal in Complex Spine Surgery. Radiographics 2024; 44:e230116. [PMID: 38386600 PMCID: PMC10924222 DOI: 10.1148/rg.230116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/11/2023] [Accepted: 08/10/2023] [Indexed: 02/24/2024]
Abstract
Surgery is the mainstay treatment of symptomatic spinal tumors. It aids in restoring functionality, managing pain and tumor growth, and improving overall quality of life. Over the past decade, advancements in medical imaging techniques combined with the use of three-dimensional (3D) printing technology have enabled improvements in the surgical management of spine tumors by significantly increasing the precision, accuracy, and safety of the surgical procedures. For complex spine surgical cases, the use of multimodality imaging is necessary to fully visualize the extent of disease, including both soft-tissue and bone involvement. Integrating the information provided by these examinations in a cohesive manner to facilitate surgical planning can be challenging, particularly when multiple surgical specialties work in concert. The digital 3-dimensional (3D) model or 3D rendering and the 3D printed model created from imaging examinations such as CT and MRI not only facilitate surgical planning but also allow the placement of virtual and physical surgical or osteotomy planes, further enhancing surgical planning and rehearsal. The authors provide practical information about the 3D printing workflow, from image acquisition to postprocessing of a 3D printed model, as well as optimal material selection and incorporation of quality management systems, to help surgeons utilize 3D printing for surgical planning. The authors also highlight the process of surgical rehearsal, how to prescribe digital osteotomy planes, and integration with intraoperative surgical navigation systems through a case-based discussion. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Karthik Tappa
- From the Department of Breast Imaging, Division of Diagnostic Imaging
(K.T.), Department of Orthopedic Oncology, Division of Surgery (J.E.B.), and
Department of Breast Imaging, Division of Diagnostic Imaging (E.M.A., L.S.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX
77030
| | - Justin E. Bird
- From the Department of Breast Imaging, Division of Diagnostic Imaging
(K.T.), Department of Orthopedic Oncology, Division of Surgery (J.E.B.), and
Department of Breast Imaging, Division of Diagnostic Imaging (E.M.A., L.S.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX
77030
| | - Elsa M. Arribas
- From the Department of Breast Imaging, Division of Diagnostic Imaging
(K.T.), Department of Orthopedic Oncology, Division of Surgery (J.E.B.), and
Department of Breast Imaging, Division of Diagnostic Imaging (E.M.A., L.S.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX
77030
| | - Lumarie Santiago
- From the Department of Breast Imaging, Division of Diagnostic Imaging
(K.T.), Department of Orthopedic Oncology, Division of Surgery (J.E.B.), and
Department of Breast Imaging, Division of Diagnostic Imaging (E.M.A., L.S.), The
University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX
77030
| |
Collapse
|
8
|
Yasen Z, Robinson AP, Woffenden H. Advanced Preoperative Planning Techniques in the Management of Complex Proximal Humerus Fractures. Cureus 2024; 16:e51551. [PMID: 38313919 PMCID: PMC10835086 DOI: 10.7759/cureus.51551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/06/2024] Open
Abstract
This review evaluates the current literature on the recent advances of preoperative planning in the management of complex proximal humerus fractures (PHF). PHFs can pose a considerable challenge for orthopaedic surgeons due to their diversity in presentation and complexity. Poor preoperative planning can lead to prolonged operations, increased blood loss, higher risk of complications, and increased stress on the surgical team. Recent advances have seen the evolution of preoperative planning from conventional methods to computer-assisted virtual surgical technology (CAVST) and three-dimensional (3D) printing, which have been highlighted as transformative tools for improving preoperative planning and postoperative outcomes. CAVST allows the creation of 3D renderings of patient-specific anatomy, clearly demonstrating fracture patterns and facilitating detailed planning for arthroplasty or surgical fixation. The early studies show promising outcomes however the literature calls for more high-quality randomised controlled trials. Using 3D printing for high-fidelity simulation involving patient-specific physical models offers an immersive experience for surgical planning. Preoperative planning with 3D printing reduces operative time, blood loss and use of fluoroscopy. The technology's potential to produce customisable surgical implants further improves its versatility. There is a need for a cost analysis for the use of these technologies within the orthopaedic field, particularly considering the high expense of 3D printing materials and extended hospital stays until the printed models are available. CAVST and 3D printing also show promising applications within high-fidelity simulation surgical training, with CAVST offering possibilities in virtual reality and haptic-enhanced simulations and 3D printing providing physical models for trainee surgeons to hone their skills. Moving forward, a reduction in the cost of 3D printing and the advancement of CAVST using artificial intelligence would lead to future improvement. In conclusion, preoperative planning supported by these innovative technologies will play a pivotal role in improving surgical outcomes and training for complex PHF cases.
Collapse
Affiliation(s)
- Zaid Yasen
- Trauma and Orthopaedics, Royal Free London NHS Foundation Trust, London, GBR
| | - Andrew P Robinson
- Trauma and Orthopaedics, Lewisham and Greenwich NHS Trust, London, GBR
| | - Hugo Woffenden
- General Surgery, HMS Nelson Medical Centre, Ministry of Defence, London, GBR
| |
Collapse
|
9
|
O'Connor O, Patel R, Thahir A, Sy J, Jou E. The use of Three-Dimensional Printing in Orthopaedics: a Systematic Review and Meta-analysis. THE ARCHIVES OF BONE AND JOINT SURGERY 2024; 12:441-456. [PMID: 39070875 PMCID: PMC11283294 DOI: 10.22038/abjs.2024.74117.3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/13/2024] [Indexed: 07/30/2024]
Abstract
Objectives 3D-printing is a rapidly developing technology with applications in orthopaedics including pre-operative planning, intraoperative guides, design of patient specific instruments and prosthetics, and education. Existing literature demonstrates that in the surgical treatment of a wide range of orthopaedic pathology, using 3D printing shows favourable outcomes. Despite this evidence 3D printing is not routinely used in orthopaedic practice. We aim to evaluate the advantages of 3D printing in orthopaedic surgery to demonstrate its widespread applications throughout the field. Methods We performed a comprehensive systematic review and meta-analysis. AMED, EMBASE, EMCARE, HMIC, PsycINFO, PubMed, BNI, CINAHL and Medline databases were searched using Healthcare Databases Advanced Search (HDAS) platform. The search was conducted to include papers published before 8th November 2020. Clinical trials, journal articles, Randomised Control Trials and Case Series were included across any area of orthopaedic surgery. The primary outcomes measured were operation time, blood loss, fluoroscopy time, bone fusion time and length of hospital stay. Results A total of 65 studies met the inclusion criteria and were reviewed, and 15 were suitable for the meta-analysis, producing a data set of 609 patients. The use of 3D printing in any of its recognised applications across orthopaedic surgery showed an overall reduction in operative time (SMD = -1.30; 95%CI: -1.73, -0.87), reduction in intraoperative blood loss (SMD = -1.58; 95%CI: -2.16, -1.00) and reduction in intraoperative fluoroscopy time (SMD = -1.86; 95%CI: -2.60, -1.12). There was no significant difference in length of hospital stay or in bone fusion time post-operatively. Conclusion The use of 3D printing in orthopaedics leads to an improvement in primary outcome measures showing reduced operative time, intraoperative blood loss and number of times fluoroscopy is used. With its wide-reaching applications and as the technology improves, 3D printing could become a valuable addition to an orthopaedic surgeon's toolbox.
Collapse
Affiliation(s)
- Olivia O'Connor
- Department of Trauma and Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom
- School of Clinical Medicine, University Of Cambridge, Cambridge, United Kingdom
- Contributed equally to this article as first authors
| | - Reece Patel
- Department of Trauma and Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom
- School of Clinical Medicine, University Of Cambridge, Cambridge, United Kingdom
- Contributed equally to this article as first authors
| | - Azeem Thahir
- Department of Trauma and Orthopaedics, Addenbrookes Major Trauma Unit, Cambridge University Hospitals, United Kingdom
| | - Jamie Sy
- Department of Medicine, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Eric Jou
- Kellogg College, University of Oxford, Oxford, United Kingdom
- Medical Sciences Division, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
10
|
Thorn C, Ballard J, Lockhart C, Crone A, Aarvold A. The perioperative utility of 3D printed models in complex surgical care: feedback from 106 cases. Ann R Coll Surg Engl 2023; 105:747-753. [PMID: 36622212 PMCID: PMC10618040 DOI: 10.1308/rcsann.2022.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 01/10/2023] Open
Abstract
INTRODUCTION 3D models are an emerging tool for surgical planning, providing an augmented method for the visualisation of a patient's anatomy. As their use increases, more data about the utility of these models is critical to inform budget allocation. This study provides the most comprehensive analysis to date for the use of 3D models in perioperative management. METHODS 3D models for complex surgical cases in NHS hospitals were delivered alongside a surgeon feedback survey. The survey on the model's utility had been designed alongside the university data analytical team and focused on five areas: surgical planning and diagnosis, economic impact, impact on intraoperative and preoperative time, effect on communication and direct impact on the patient. RESULTS There were 106 models used by 63 surgeons for complex surgical cases between May 2020 and March 2021, across multiple surgical specialties. The models were reported to have benefits in all perioperative areas, with 92.5% of responses agreeing that the 3D model was a better method for diagnosis and planning than traditional 2D techniques. Benefits were reported on preoperative planning (92.4%), economic savings due to equipment selection (54.4%), reduction in surgical time (41.5%) and surgeon-to-surgeon communication (92.6%). CONCLUSION 3D models were shown to have a wide range of benefits in a surgical setting. The reduction in surgical time could have the potential to help alleviate surgical backlogs. With more widespread use and optimisation of costs the use of 3D models could become the standard for unusual and complex surgical cases.
Collapse
Affiliation(s)
- C Thorn
- University of Southampton, UK
| | - J Ballard
- Belfast Health and Social Care Trust, Belfast, UK
| | - C Lockhart
- Belfast Health and Social Care Trust, Belfast, UK
| | - A Crone
- Belfast Health and Social Care Trust, Belfast, UK
| | - A Aarvold
- University Hospital Southampton NHS Foundation Trust, UK
| |
Collapse
|
11
|
Richard RD, Heare A, Mauffrey C, McGinley B, Lencioni A, Chandra A, Nasib V, Chaiken BL, Trompeter A. Use of 3D Printing Technology in Fracture Management: A Review and Case Series. J Orthop Trauma 2023; 37:S40-S48. [PMID: 37828701 DOI: 10.1097/bot.0000000000002693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 10/14/2023]
Abstract
SUMMARY Three-dimensional (3D) offers exciting opportunities in medicine, particularly in orthopaedics. The boundaries of 3D printing are continuously being re-established and have paved the way for further innovations, including 3D bioprinting, custom printing refined methods, 4D bioprinting, and 5D printing potential. The quality of these applications have been steadily improving, increasing their widespread use among clinicians. This article provides a review of the current literature with a brief introduction to the process of additive manufacturing, 3D printing, and its applications in fracture care. We illustrate this technology with a case series of 3D printing used for correction of complex fractures/nonunion. Factors limiting the use of this technology, including cost, and potential solutions are discussed. Finally, we discuss 4D bioprinting and 5D printing and their potential role in fracture surgery.
Collapse
Affiliation(s)
- Raveesh D Richard
- Department of Orthopedics, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO; and
| | - Austin Heare
- Department of Orthopedics, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO; and
| | - Cyril Mauffrey
- Department of Orthopedics, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO; and
| | - Beau McGinley
- Department of Orthopedics, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO; and
| | - Alex Lencioni
- Department of Orthopedics, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO; and
| | - Arjun Chandra
- Trauma and Orthopaedic Department, St. Georges University Hospital, London, England
| | - Vareesha Nasib
- Trauma and Orthopaedic Department, St. Georges University Hospital, London, England
| | - Brian L Chaiken
- Department of Orthopedics, Denver Health Medical Center, University of Colorado School of Medicine, Denver, CO; and
| | - Alex Trompeter
- Trauma and Orthopaedic Department, St. Georges University Hospital, London, England
| |
Collapse
|
12
|
Grunert R, Winkler D, Frank F, Moebius R, Kropla F, Meixensberger J, Hepp P, Elze M. 3D-printing of the elbow in complex posttraumatic elbow-stiffness for preoperative planning, surgery-simulation and postoperative control. 3D Print Med 2023; 9:28. [PMID: 37801133 PMCID: PMC10559461 DOI: 10.1186/s41205-023-00191-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Restoration of mobility of the elbow after post-traumatic elbow stiffening due to osteophytes is often a problem. METHODS The anatomical structures were segmented within the CT-scan. Afterwards, the Multi Jet Fusion 3D-printing was applied to create the model made of biocompatible and steam-sterilizable plastic. Preoperative simulation of osteophyte resection at the 3D-model was performed as well as the direct comparison with the patient anatomy intraoperatively. RESULTS The patient-specific was very helpful for the preoperative simulation of the resection of elbow osteophytes. The 3D anatomical representation improved the preoperative plan its implementation. A high degree of fidelity was found between the 3D Printed Anatomical representation and the actual joint pathology. CONCLUSIONS Arthrolysis of complex post-traumatic bony changes is an important indication for the use of 3D models for preoperative planning. Due to the use of 3D printing and software simulation, accurate resection planning is feasible and residual bony stiffening can be avoided. 3D printing models can lead to an improvement in surgical quality.
Collapse
Affiliation(s)
- Ronny Grunert
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany.
- Fraunhofer Institute for Machine Tools and Forming Technology, Theodor-Koerner-Allee 6, Zittau, 02763, Germany.
| | - Dirk Winkler
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Franziska Frank
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Robert Moebius
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Fabian Kropla
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Juergen Meixensberger
- Department of Neurosurgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Pierre Hepp
- Department Orthopedics, Trauma Surgery and Plastic Surgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| | - Maria Elze
- Department Orthopedics, Trauma Surgery and Plastic Surgery, University Leipzig, Liebigstr. 20, Leipzig, 04103, Germany
| |
Collapse
|
13
|
Mendonça CJA, Gasoto SC, Belo IM, Setti JAP, Soni JF, Júnior BS. Application of 3D Printing Technology in the Treatment of Hoffa's Fracture Nonunion. Rev Bras Ortop 2023; 58:303-312. [PMID: 37252303 PMCID: PMC10212646 DOI: 10.1055/s-0042-1750760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/28/2022] [Indexed: 11/06/2022] Open
Abstract
Objective To evaluate a proposed three-dimensional (3D) printing process of a biomodel developed with the aid of fused deposition modeling (FDM) technology based on computed tomography (CT) scans of an individual with nonunion of a coronal femoral condyle fracture (Hoffa's fracture). Materials and Methods Thus, we used CT scans, which enable the evaluation of the 3D volumetric reconstruction of the anatomical model, as well as of the architecture and bone geometry of sites with complex anatomy, such as the joints. In addition, it enables the development of the virtual surgical planning (VSP) in a computer-aided design (CAD) software. This technology makes it possible to print full-scale anatomical models that can be used in surgical simulations for training and in the choice of the best placement of the implant according to the VSP. In the radiographic evaluation of the osteosynthesis of the Hoffa's fracture nonunion, we assessed the position of the implant in the 3D-printed anatomical model and in the patient's knee. Results The 3D-printed anatomical model showed geometric and morphological characteristics similar to those of the actual bone. The position of the implants in relation to the nonunion line and anatomical landmarks showed great accuracy in the comparison of the patient's knee with the 3D-printed anatomical model. Conclusion The use of the virtual anatomical model and the 3D-printed anatomical model with the additive manufacturing (AM) technology proved to be effective and useful in planning and performing the surgical treatment of Hoffa's fracture nonunion. Thus, it showed great accuracy in the reproducibility of the virtual surgical planning and the 3D-printed anatomical model.
Collapse
Affiliation(s)
- Celso Júnio Aguiar Mendonça
- Unidade do Sistema Musculoesquelético, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brasil
- Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| | - Sidney Carlos Gasoto
- Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| | - Ivan Moura Belo
- Programa de Pós-Graduação em Engenharia Biomédica, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| | - João Antônio Palma Setti
- Programa de Pós-Graduação em Engenharia Biomédica, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| | - Jamil Faissal Soni
- Unidade do Sistema Musculoesquelético, Hospital de Clínicas da Universidade Federal do Paraná, Curitiba, Paraná, Brasil
- Hospital Universitário Cajuru, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brasil
| | - Bertoldo Schneider Júnior
- Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
- Programa de Pós-Graduação em Engenharia Biomédica, Universidade Tecnológica Federal do Paraná, Curitiba, Paraná, Brasil
| |
Collapse
|
14
|
Zamri MF, Ng BW, Jamil K, Abd Rashid AH, Abd Rasid AF. Office Three-Dimensional Printed Osteotomy Guide for Corrective Osteotomy in Fibrous Dysplasia. Cureus 2023; 15:e36384. [PMID: 37090315 PMCID: PMC10115740 DOI: 10.7759/cureus.36384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2023] [Indexed: 03/22/2023] Open
Abstract
Fibrous dysplasia is a benign condition but can lead to severe long-bone deformities. Three-dimensional (3D) printing technology is a rapidly developing field that has now been popularized to aid surgeons in preoperative planning. We report a case of hip deformity in a 21-year-old woman who suffered from fibrous dysplasia and underwent a corrective osteotomy. We utilized open-source 3D computing software for preoperative planning before producing an osteotomy guide to aid in the operation.
Collapse
|
15
|
Shopova D, Yaneva A, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, Sbirkov Y, Sarafian V, Semerdzhieva M. (Bio)printing in Personalized Medicine—Opportunities and Potential Benefits. Bioengineering (Basel) 2023; 10:bioengineering10030287. [PMID: 36978678 PMCID: PMC10045778 DOI: 10.3390/bioengineering10030287] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The global development of technologies now enters areas related to human health, with a transition from conventional to personalized medicine that is based to a significant extent on (bio)printing. The goal of this article is to review some of the published scientific literature and to highlight the importance and potential benefits of using 3D (bio)printing techniques in contemporary personalized medicine and also to offer future perspectives in this research field. The article is prepared according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Web of Science, PubMed, Scopus, Google Scholar, and ScienceDirect databases were used in the literature search. Six authors independently performed the search, study selection, and data extraction. This review focuses on 3D bio(printing) in personalized medicine and provides a classification of 3D bio(printing) benefits in several categories: overcoming the shortage of organs for transplantation, elimination of problems due to the difference between sexes in organ transplantation, reducing the cases of rejection of transplanted organs, enhancing the survival of patients with transplantation, drug research and development, elimination of genetic/congenital defects in tissues and organs, and surgery planning and medical training for young doctors. In particular, we highlight the benefits of each 3D bio(printing) applications included along with the associated scientific reports from recent literature. In addition, we present an overview of some of the challenges that need to be overcome in the applications of 3D bioprinting in personalized medicine. The reviewed articles lead to the conclusion that bioprinting may be adopted as a revolution in the development of personalized, medicine and it has a huge potential in the near future to become a gold standard in future healthcare in the world.
Collapse
Affiliation(s)
- Dobromira Shopova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University, 4000 Plovdiv, Bulgaria
- Correspondence: ; Tel.: +359-887417078
| | - Antoniya Yaneva
- Department of Medical Informatics, Biostatistics and eLearning, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Desislava Bakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Anna Mihaylova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Petya Kasnakova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Maria Hristozova
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| | - Yordan Sbirkov
- Department of Medical Biology, Medical University, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University, 4000 Plovdiv, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Medical University, 4000 Plovdiv, Bulgaria
- Research Institute, Medical University, 4000 Plovdiv, Bulgaria
| | - Mariya Semerdzhieva
- Department of Healthcare Management, Faculty of Public Health, Medical University, 4000 Plovdiv, Bulgaria
| |
Collapse
|
16
|
Li LX, Kedgley AE, Horwitz MD. A Review of the Use of 3D Printing Technology in Treatment of Scaphoid Fractures. J Hand Surg Asian Pac Vol 2023; 28:22-33. [PMID: 36803332 DOI: 10.1142/s2424835523500042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Background: Three-dimensional (3D) printing technology is increasingly commercially viable for pre-surgical planning, intraoperative templating, jig creation and customised implant manufacture. The challenging nature of scaphoid fracture and nonunion surgery make it an obvious target. The aim of this review is to determine the use of 3D printed technologies in the treatment of scaphoid fractures. Methods: This is a review of the Medline, Embase and Cochrane Library databases examining studies aimed at therapeutic use of 3D printing, also known as rapid prototyping or additive technology, in the treatment of scaphoid fractures. All studies published up to and including November 2020 were included in the search. Relevant data extracted included modality of use (as template/model/guide/prosthesis), operative time, accuracy of reduction, radiation exposure, follow-up duration, time to union, complications and study quality. Results: A total of 649 articles were identified, of which 12 met the full inclusion criteria. Analysis of the articles showed that 3D printing techniques can be utilised in myriad ways to aid planning and delivery of scaphoid surgery. Percutaneous guides for Kirschner-wire (K-wire) fixation of non-displaced fractures can be created; custom guides can be printed to aid reduction of displaced or non-united fractures; patient-specific total prostheses may recreate near-normal carpal biomechanics and a simple model may help graft harvesting and positioning. Conclusions: This review found that the use of 3D printed patient-specific models and templates in scaphoid surgery can improve accuracy and speed, and reduce radiation exposure. 3D printed prostheses may also restore near-normal carpal biomechanics without burning bridges for potential future procedures. Level of Evidence: Level III (Therapeutic).
Collapse
Affiliation(s)
- Lily X Li
- Department of Trauma and Orthopaedics, St Mary's Hospital, London, UK
| | | | - Maxim D Horwitz
- Department of Hand Surgery, Chelsea and Westminster Hospital, London, UK
| |
Collapse
|
17
|
Lan L, Mao RQ, Qiu RY, Kay J, de Sa D. Immersive Virtual Reality for Patient-Specific Preoperative Planning: A Systematic Review. Surg Innov 2023; 30:109-122. [PMID: 36448920 PMCID: PMC9925905 DOI: 10.1177/15533506221143235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background. Immersive virtual reality (iVR) facilitates surgical decision-making by enabling surgeons to interact with complex anatomic structures in realistic 3-dimensional environments. With emerging interest in its applications, its effects on patients and providers should be clarified. This systematic review examines the current literature on iVR for patient-specific preoperative planning. Materials and Methods. A literature search was performed on five databases for publications from January 1, 2000 through March 21, 2021. Primary studies on the use of iVR simulators by surgeons at any level of training for patient-specific preoperative planning were eligible. Two reviewers independently screened titles, abstracts, and full texts, extracted data, and assessed quality using the Quality Assessment Tool for Studies with Diverse Designs (QATSDD). Results were qualitatively synthesized, and descriptive statistics were calculated. Results. The systematic search yielded 2,555 studies in total, with 24 full-texts subsequently included for qualitative synthesis, representing 264 medical personnel and 460 patients. Neurosurgery was the most frequently represented discipline (10/24; 42%). Preoperative iVR did not significantly improve patient-specific outcomes of operative time, blood loss, complications, and length of stay, but may decrease fluoroscopy time. In contrast, iVR improved surgeon-specific outcomes of surgical strategy, anatomy visualization, and confidence. Validity, reliability, and feasibility of patient-specific iVR models were assessed. The mean QATSDD score of included studies was 32.9%. Conclusions. Immersive VR improves surgeon experiences of preoperative planning, with minimal evidence for impact on short-term patient outcomes. Future work should focus on high-quality studies investigating long-term patient outcomes, and utility of preoperative iVR for trainees.
Collapse
Affiliation(s)
- Lucy Lan
- Michael G. DeGroote School of
Medicine, McMaster University, Hamilton, ON, Canada,Lucy Lan, Michael G. DeGroote School of
Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5,
Canada.
| | - Randi Q. Mao
- Michael G. DeGroote School of
Medicine, McMaster University, Hamilton, ON, Canada
| | - Reva Y. Qiu
- Michael G. DeGroote School of
Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeffrey Kay
- Division of Orthopaedic Surgery,
Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Darren de Sa
- Division of Orthopaedic Surgery,
Department of Surgery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
McMenamin PG. The Third Dimension: 3D Printed Replicas and Other Alternatives to Cadaver-Based Learning. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1421:39-61. [PMID: 37524983 DOI: 10.1007/978-3-031-30379-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Capturing the 'third dimension' of complex human form or anatomy has been an objective of artists and anatomists from the renaissance in the fifteenth and sixteenth centuries onwards. Many of these drawings, paintings, and sculptures have had a profound influence on medical teaching and the learning resources we took for granted until around 40 years ago. Since then, the teaching of human anatomy has undergone significant change, especially in respect of the technologies available to augment or replace traditional cadaver-based dissection instruction. Whilst resources such as atlases, wall charts, plastic models, and images from the Internet have been around for many decades, institutions looking to reduce the reliance on dissection-based teaching in medical or health professional training programmes have in more recent times increasingly had access to a range of other options for classroom-based instruction. These include digital resources and software programmes and plastinated specimens, although the latter come with a range of ethical and cost considerations. However, the urge to recapitulate the 'third dimension' of anatomy has seen the recent advent of novel resources in the form of 3D printed replicas. These 3D printed replicas of normal human anatomy dissections are based on a combination of radiographic imaging and surface scanning that captures critical 3D anatomical information. The final 3D files can either be augmented with false colour or made to closely resemble traditional prosections prior to printing. This chapter details the journey we and others have taken in the search for the 'third dimension'. The future of a haptically identical, anatomically accurate replica of human cadaver specimens for surgical and medical training is nearly upon us. Indeed, the need for hard copy replicas may eventually be superseded by the opportunities afforded by virtual reality (VR) and augmented reality (AR).
Collapse
Affiliation(s)
- Paul G McMenamin
- Faculty of Medicine, Nursing and Health Sciences, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
19
|
Properties and Implementation of 3-Dimensionally Printed Models in Spine Surgery: A Mixed-Methods Review With Meta-Analysis. World Neurosurg 2023; 169:57-72. [PMID: 36309334 DOI: 10.1016/j.wneu.2022.10.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Spine surgery addresses a wide range of spinal pathologies. Potential applications of 3-dimensional (3D) printed in spine surgery are broad, encompassing education, planning, and simulation. The objective of this study was to explore how 3D-printed spine models are implemented in spine surgery and their clinical applications. METHODS Methods were combined to create a scoping review with meta-analyses. PubMed, EMBASE, the Cochrane Library, and Scopus databases were searched from 2011 to 7 September 2021. Results were screened independently by 2 reviewers. Studies utilizing 3D-printed spine models in spine surgery were included. Articles describing drill guides, implants, or nonoriginal research were excluded. Data were extracted according to reporting guidelines in relation to study information, use of model, 3D printer and printing material, design features of the model, and clinical use/patient-related outcomes. Meta-analyses were performed using random-effects models. RESULTS Forty articles were included in the review, 3 of which were included in the meta-analysis. Primary use of the spine models included preoperative planning, education, and simulation. Six printing technologies were utilized. A range of substrates were used to recreate the spine and regional pathology. Models used for preoperative and intraoperative planning showed reductions in key surgical performance indicators. Generally, feedback for the tactility, utility, and education use of models was favorable. CONCLUSIONS Replicating realistic spine models for operative planning, education, and training is invaluable in a subspeciality where mistakes can have devastating repercussions. Future study should evaluate the cost-effectiveness and the impact spine models have of spine surgery outcomes.
Collapse
|
20
|
Mendonça CJA, Guimarães RMDR, Pontim CE, Gasoto SC, Setti JAP, Soni JF, Schneider B. An Overview of 3D Anatomical Model Printing in Orthopedic Trauma Surgery. J Multidiscip Healthc 2023; 16:875-887. [PMID: 37038452 PMCID: PMC10082616 DOI: 10.2147/jmdh.s386406] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/09/2022] [Indexed: 04/12/2023] Open
Abstract
Introduction 3D object printing technology is a resource increasingly used in medicine in recent years, mainly incorporated in surgical areas like orthopedics. The models made by 3D printing technology provide surgeons with an accurate analysis of complex anatomical structures, allowing the planning, training, and surgery simulation. In orthopedic surgery, this technique is especially applied in oncological surgeries, bone, and joint reconstructions, and orthopedic trauma surgeries. In these cases, it is possible to prototype anatomical models for surgical planning, simulating, and training, besides printing of instruments and implants. Purpose The purpose of this paper is to describe the acquisition and processing from computed tomography images for 3D printing, to describe modeling and the 3D printing process of the biomodels in real size. This paper highlights 3D printing with the applicability of the 3D biomodels in orthopedic surgeries and shows some examples of surgical planning in orthopedic trauma surgery. Patients and Methods Four examples were selected to demonstrate the workflow and rationale throughout the process of planning and printing 3D models to be used in a variety of situations in orthopedic trauma surgeries. In all cases, the use of 3D modeling has impacted and improved the final treatment strategy. Conclusion The use of the virtual anatomical model and the 3D printed anatomical model with the additive manufacturing technology proved to be effective and useful in planning and performing the surgical treatment of complex articular fractures, allowing surgical planning both virtual and with the 3D printed anatomical model, besides being useful during the surgical time as a navigation instrument.
Collapse
Affiliation(s)
- Celso Junio Aguiar Mendonça
- Musculoskeletal System Unit, Hospital of Federal University of Paraná, Curitiba, Paraná, Brazil
- Postgraduate Program in Electrical Engineering and Industrial Informatics, Hospital of the Federal University of Paraná, Curitiba, Paraná, Brazil
- Correspondence: Celso Junio Aguiar Mendonça, Postgraduate Program in Electrical Engineering and Industrial Informatics – CPGEI, Federal Technological University of Paraná – UTFPR, Av. Sete de Setembro, 3165 – Rebouças, Curitiba, Paraná, 80230-901, Brazil, Tel +55 41 999973900, Email
| | - Ricardo Munhoz da Rocha Guimarães
- Cajuru University Hospital, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
- Postgraduate Program in Biomedical Engineering, Hospital of the Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Carlos Eduardo Pontim
- Postgraduate Program in Biomedical Engineering, Hospital of the Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Sidney Carlos Gasoto
- Postgraduate Program in Electrical Engineering and Industrial Informatics, Hospital of the Federal University of Paraná, Curitiba, Paraná, Brazil
| | - João Antonio Palma Setti
- Postgraduate Program in Biomedical Engineering, Hospital of the Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Jamil Faissal Soni
- Musculoskeletal System Unit, Hospital of Federal University of Paraná, Curitiba, Paraná, Brazil
- Cajuru University Hospital, Pontifical Catholic University of Paraná, Curitiba, Paraná, Brazil
| | - Bertoldo Schneider
- Postgraduate Program in Electrical Engineering and Industrial Informatics, Hospital of the Federal University of Paraná, Curitiba, Paraná, Brazil
- Postgraduate Program in Biomedical Engineering, Hospital of the Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
21
|
Zhu C, Zhang C, Zhao Y, Yu G, Yu L. Modified Masquelet Technique Assisting 3D Printed Elbow Prosthesis for Open Elbow Fracture with Severe Bone Defect: A Case Report and Technique Note. Orthop Surg 2022; 14:3423-3430. [PMID: 36263967 PMCID: PMC9732626 DOI: 10.1111/os.13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/28/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Internal fixation for severe open articular bone defects is sometimes ineffective or dangerous. In the emergency stage, radical debridement and infection prevention are demanded to provide a good tissue base and the space-occupying effect to provide enough necessary space to avoid soft-tissue contraction for the reconstruction. In addition, the 3D printing technology makes individual limb reconstruction a reality. CASE PRESENTATION Here, we present a 31-year-old patient with an open fracture and severe bone defect of his left elbow caused by traffic accident, classified as Gustilo-Anderson IIIB. We adopted aggressive debridement and insertion of polymethyl methacrylate (PMMA) to prevent the infection and temporarily construct the bone defect in the emergency stage. Secondly, the total elbow arthroplasty was performed using a unique three-dimensional (3D) printed prosthesis to reconstruct the elbow joint. During the follow-up, the elbow movement function was satisfactory. CONCLUSIONS The modified Masquelet technique assisting 3D printing of personalized elbow joint makes the satisfactory functional reconstruction for open high-energy injuries come true. It could be promoted for the similar surgery of other open joints fractures with severe bone defects.
Collapse
Affiliation(s)
- Chunquan Zhu
- Department of Trauma and Microsurgery OrthopedicsZhongnan Hospital of Wuhan UniversityWuhanChina,Department of OrthopedicsWuhan Fourth HospitalPuai HospitalWuhanChina
| | - Chong Zhang
- Department of Trauma and Microsurgery OrthopedicsZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Yong Zhao
- Department of Trauma and Microsurgery OrthopedicsZhongnan Hospital of Wuhan UniversityWuhanChina
| | - Guorong Yu
- Department of Trauma and Microsurgery OrthopedicsZhongnan Hospital of Wuhan UniversityWuhanChina
| | | |
Collapse
|
22
|
Lee AKX, Lin TL, Hsu CJ, Fong YC, Chen HT, Tsai CH. Three-Dimensional Printing and Fracture Mapping in Pelvic and Acetabular Fractures: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11185258. [PMID: 36142905 PMCID: PMC9506009 DOI: 10.3390/jcm11185258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional printing and fracture mapping technology is gaining popularity for preoperative planning of fractures. The aim of this meta-analysis is to further understand for the effects of 3D printing and fracture mapping on intraoperative parameters, postoperative complications, and functional recovery on pelvic and acetabular fractures. The PubMed, Embase, Cochrane and Web of Science databases were systematically searched for articles according to established criteria. A total of 17 studies were included in this study, of which 3 were RCTs, with a total of 889 patients, including 458 patients treated by traditional open reduction and internal fixation methods and 431 patients treated using 3D printing strategies. It was revealed that three-dimensional printing and fracture mapping reduced intraoperative surgical duration (RoM 0.74; 95% CI; 0.66–0.83; I2 = 93%), and blood loss (RoM 0.71; 95% CI; 0.63–0.81; I2 = 71%). as compared to traditional surgical approaches. In addition, there was significantly lower exposure to intraoperative imaging (RoM 0.36; 95% CI; 0.17–0.76; I2 = 99%), significantly lower postoperative complications (OR 0.42; 95% CI; 0.22–0.78; I2 = 9%) and significantly higher excellent/good reduction (OR 1.53; 95% CI; 1.08–2.17; I2 = 0%) in the three-dimensional printing and fracture mapping group. Further stratification results with only prospective studies showed similar trends. Three-dimensional printing and fracture mapping technology has potential in enhancing treatment of complex fractures by improving surgical related factors and functional outcomes and therefore could be considered as a viable tool for future clinical applications.
Collapse
Affiliation(s)
- Alvin Kai-Xing Lee
- Department of Education, China Medical University Hospital, Taichung 404, Taiwan
| | - Tsung-Li Lin
- Department of Orthopedics Surgery, China Medical University Hospital, Taichung 404, Taiwan
- Department of Sports Medicine, China Medical University, Taichung 404, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Chin-Jung Hsu
- Department of Orthopedics Surgery, China Medical University Hospital, Taichung 404, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Yi-Chin Fong
- Department of Orthopedics Surgery, China Medical University Hospital, Taichung 404, Taiwan
- Department of Sports Medicine, China Medical University, Taichung 404, Taiwan
- Department of Orthopedics Surgery, China Medical University Hospital Beigang Branch, Yunlin 651, Taiwan
| | - Hsien-Te Chen
- Spine Center, China Medical University Hospital, Taichung 404, Taiwan
| | - Chun-Hao Tsai
- Department of Orthopedics Surgery, China Medical University Hospital, Taichung 404, Taiwan
- Department of Sports Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence:
| |
Collapse
|
23
|
Galán-Olleros M, García-Coiradas J, Llanos S, Valle-Cruz J, Marco F. [Translated article] Fracture planning is easy: Development of a basic method of digital planning based on the traditional pencil and paper technique. Rev Esp Cir Ortop Traumatol (Engl Ed) 2022; 66:T328-T340. [DOI: 10.1016/j.recot.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
|
24
|
Vasiliadis AV, Koukoulias N, Katakalos K. From Three-Dimensional (3D)- to 6D-Printing Technology in Orthopedics: Science Fiction or Scientific Reality? J Funct Biomater 2022; 13:jfb13030101. [PMID: 35893469 PMCID: PMC9326671 DOI: 10.3390/jfb13030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past three decades, additive manufacturing has changed from an innovative technology to an increasingly accessible tool in all aspects of different medical practices, including orthopedics. Although 3D-printing technology offers a relatively inexpensive, rapid and less risky route of manufacturing, it is still quite limited for the fabrication of more complex objects. Over the last few years, stable 3D-printed objects have been converted to smart objects or implants using novel 4D-printing systems. Four-dimensional printing is an advanced process that creates the final object by adding smart materials. Human bones are curved along their axes, a morphological characteristic that augments the mechanical strain caused by external forces. Instead of the three axes used in 4D printing, 5D-printing technology uses five axes, creating curved and more complex objects. Nowadays, 6D-printing technology marries the concepts of 4D- and 5D-printing technology to produce objects that change shape over time in response to external stimuli. In future research, it is obvious that printing technology will include a combination of multi-dimensional printing technology and smart materials. Multi-dimensional additive manufacturing technology will drive the printing dimension to higher levels of structural freedom and printing efficacy, offering promising properties for various orthopedic applications.
Collapse
Affiliation(s)
- Angelo V. Vasiliadis
- 2nd Orthopedic Department, General Hospital of Thessaloniki “Papageorgiou”, 56403 Thessaloniki, Greece
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| | - Nikolaos Koukoulias
- Orthopedic Department, Sports Injuries Unit, Saint Luke’s Hospital, 55236 Thessaloniki, Greece;
| | - Konstantinos Katakalos
- Laboratory for Strength of Materials and Structures, Department of Civil Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
25
|
Hung CC, Shen PH, Wu JL, Cheng YW, Chen WL, Lee SH, Yeh TT. Association between 3D Printing-Assisted Pelvic or Acetabular Fracture Surgery and the Length of Hospital Stay in Nongeriatric Male Adults. J Pers Med 2022; 12:jpm12040573. [PMID: 35455689 PMCID: PMC9026420 DOI: 10.3390/jpm12040573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023] Open
Abstract
Pelvic and acetabular fractures are challenging for orthopedic surgeons, but 3D printing has many benefits in treating these fractures and has been applied worldwide. This study aimed to determine whether 3D printing can shorten the length of hospital stay (LHS) in nongeriatric male adult patients with these fractures. This is a single-center retrospective study of 167 nongeriatric male adult participants from August 2009 to December 2021. Participants were divided into two groups based on whether they received 3D printing assistance. Subgroup analyses were performed. Pearson’s correlation and multivariable linear regression models were used to analyze the LHS and the parameters. Results showed that 3D printing-assisted surgery did not affect LHS in the analyzed patients. The LHS was positively correlated with the Injury Severity Score (ISS). Initial hemoglobin levels were negatively associated with LHS in patients aged 18−40 and non-major trauma (ISS < 16) patients. In 40−60-year-old and non-major trauma patients, the duration from fracture to admission was significantly associated with LHS. This study indicates that 3D-assisted technology for pelvic or acetabular fracture surgery for nongeriatric male adults does not influence the LHS. More importantly, the initial evaluation of patients in the hospital was the main predictor of the LHS.
Collapse
Affiliation(s)
- Chun-Chi Hung
- Department of Orthopaedic Surgery, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd. Neihu Dist., Taipei City 11490, Taiwan; (C.-C.H.); (P.-H.S.)
- Division of Traumatology, Department of Surgery, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd. Neihu Dist., Taipei City 11490, Taiwan
| | - Pei-Hung Shen
- Department of Orthopaedic Surgery, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd. Neihu Dist., Taipei City 11490, Taiwan; (C.-C.H.); (P.-H.S.)
| | - Jia-Lin Wu
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (J.-L.W.); (S.-H.L.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11600, Taiwan
| | - Yung-Wen Cheng
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd. Neihu Dist., Taipei City 11490, Taiwan; (Y.-W.C.); (W.-L.C.)
| | - Wei-Liang Chen
- Division of Family Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd. Neihu Dist., Taipei City 11490, Taiwan; (Y.-W.C.); (W.-L.C.)
- Division of Geriatric Medicine, Department of Family and Community Medicine, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd. Neihu Dist., Taipei City 11490, Taiwan
- Department of Biochemistry, National Defense Medical Center, No. 161, Sec. 6, Minquan E. Rd. Neihu Dist., Taipei City 11490, Taiwan
| | - Shih-Han Lee
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (J.-L.W.); (S.-H.L.)
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
| | - Tsu-Te Yeh
- Department of Orthopaedic Surgery, Tri-Service General Hospital and School of Medicine, National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd. Neihu Dist., Taipei City 11490, Taiwan; (C.-C.H.); (P.-H.S.)
- Medical 3D Printing Center, Tri-Service General Hospital and National Defense Medical Center, No. 325, Sec. 2, Chenggong Rd. Neihu Dist., Taipei City 11490, Taiwan
- Correspondence: ; Tel.: +886-2-87923311
| |
Collapse
|
26
|
Use of 3D printing and pre-contouring plate in the surgical planning of acetabular fractures: A systematic review. Orthop Traumatol Surg Res 2022; 108:103111. [PMID: 34648997 DOI: 10.1016/j.otsr.2021.103111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/15/2021] [Accepted: 07/16/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Acetabular fractures are caused by high energy injuries. The treatment aims to reconstruct the articular surface, restoring the anatomical structure. The surgical management of these fractures is difficult because it requires familiarity with the 3D anatomy of the pelvis. With the use of 3D printing technique for planning surgery, this limitation could be overcome. HYPOTHESIS Studies examining the use of 3D printing in pre-operative planning of acetabular fractures tend to agree on its usefulness. METHODS A systematic review of two electronic medical databases was performed by three independent authors, using the following inclusion criteria: any type of acetabular fracture and pre-operative use of 3D printing to plan the surgery. RESULTS Among 93 screened articles, following selection criteria, six randomised controlled human trials (hRCT) were eligible for the study; articles compare a group in which a pre-contouring plate was performed through 3D printing with a control group in which the plate was intraoperatively modelled. CONCLUSION This review demonstrates the advantage of 3D printing in terms of surgical time, reduction of blood losses, quality of fracture reduction, and fixation, and reporting best clinical outcomes. LEVEL OF EVIDENCE II.
Collapse
|
27
|
Papotto G, Testa G, Mobilia G, Perez S, Dimartino S, Giardina SMC, Sessa G, Pavone V. Use of 3D printing and pre-contouring plate in the surgical planning of acetabular fractures: A systematic review. ORTHOPAEDICS & TRAUMATOLOGY: SURGERY & RESEARCH 2022; 108:103111. [DOI: https:/doi.org/10.1016/j.otsr.2021.103111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
|
28
|
Gandapur HK, Amin MS. Orthopaedics and Additive Manufacturing: The Start of a New Era. Pak J Med Sci 2022; 38:751-756. [PMID: 35480542 PMCID: PMC9002451 DOI: 10.12669/pjms.38.3.5182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/20/2021] [Indexed: 11/28/2022] Open
Abstract
The aim of this article is to report the recent surge in use of additive manufacturing (AM) or three-dimensional printing (3DP) services in healthcare, especially the field of orthopaedics. Pakistan's healthcare infrastructure has been slow in adapting and implementing this new technology which is an integral part of the industry 4.0. Various sources including Pubmed, ScienceDirect, Google Scholar and Google were utilised from June to august 2021 to extract articles and information on advantages of AM in orthopaedics. Furthermore, its possible acquisition by a hospital, educational or an industrial setup is also highlighted in this review.
Collapse
Affiliation(s)
| | - M. Suhail Amin
- Prof. Maj. Gen. M. Suhail Amin, MRCS (Ed), MCPS (HPE), FCPS (Surg), FCPS (Ortho). Dean, Armed Forces Postgraduate Medical Institute, Professor, Army Medical College, Rawalpindi, Combined Military Hospital, Rawalpindi, Pakistan
| |
Collapse
|
29
|
Bastawrous S, Wu L, Liacouras PC, Levin DB, Ahmed MT, Strzelecki B, Amendola MF, Lee JT, Coburn J, Ripley B. Establishing 3D Printing at the Point of Care: Basic Principles and Tools for Success. Radiographics 2022; 42:451-468. [PMID: 35119967 DOI: 10.1148/rg.210113] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the medical applications of three-dimensional (3D) printing increase, so does the number of health care organizations in which adoption or expansion of 3D printing facilities is under consideration. With recent advancements in 3D printing technology, medical practitioners have embraced this powerful tool to help them to deliver high-quality patient care, with a focus on sustainability. The use of 3D printing in the hospital or clinic at the point of care (POC) has profound potential, but its adoption is not without unanticipated challenges and considerations. The authors provide the basic principles and considerations for building the infrastructure to support 3D printing inside the hospital. This process includes building a business case; determining the requirements for facilities, space, and staff; designing a digital workflow; and considering how electronic health records may have a role in the future. The authors also discuss the supported applications and benefits of medical 3D printing and briefly highlight quality and regulatory considerations. The information presented is meant to be a practical guide to assist radiology departments in exploring the possibilities of POC 3D printing and expanding it from a niche application to a fixture of clinical care. An invited commentary by Ballard is available online. ©RSNA, 2022.
Collapse
Affiliation(s)
- Sarah Bastawrous
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Lei Wu
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Peter C Liacouras
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Dmitry B Levin
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Mohamed Tarek Ahmed
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Brian Strzelecki
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Michael F Amendola
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James T Lee
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - James Coburn
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| | - Beth Ripley
- Department of Radiology (S.B., L.W., B.R.) and Department of Medicine, Division of Cardiology (D.B.L.), University of Washington School of Medicine, Seattle, Wash; Departments of Radiology (S.B., L.W., B.R.) and Research and Development (B.S.), VA Puget Sound Health Care System, Mailbox S-114, Radiology, 1660 S Columbian Way, Seattle, WA 98108-1597; 3D Medical Applications Center, Walter Reed National Military Medical Center, Bethesda, Md (P.C.L.); Department of Radiology, University of Kentucky College of Medicine, Lexington, Ky (M.T.A., J.T.L.); Department of Surgery, Division of Vascular Surgery, Surgical Services (112), Virginia Commonwealth University School of Medicine, Richmond, Va (M.F.A.); and Department of Bioengineering, University of Maryland, College Park, Md (J.C.)
| |
Collapse
|
30
|
Bouabdellah M, Bensalah M, Kamoun C, Bellil M, Kooli M, Hadhri K. Advantages of three-dimensional printing in the management of acetabular fracture fixed by the Kocher-Langenbeck approach: randomised controlled trial. INTERNATIONAL ORTHOPAEDICS 2022; 46:1155-1163. [PMID: 35103815 DOI: 10.1007/s00264-022-05319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE To compare the outcomes of the Kocher-Langenbeck reduction and fixation of the posterior structures of the acetabulum between 3D printing technique and conventional technique. METHODS Forty-three patients who sustained fractures of the posterior part of the acetabulum were randomly assigned to two groups: 3D printing (G1; n = 20) and conventional technique (G2; n = 23). The surgical time, intra-operative blood loss, differences between pre-and post-operative haemoglobin, universal functional and radiographic scores, and complications were compared between the groups. The minimum follow-up was 18 months. RESULTS The average operating time (120.75 min) and intra-operative blood loss (244 ml) were lower in G1 than in G2 (125.87 min and 268.7 ml, respectively; p = 0.42, p = 0.1, respectively). The difference between the pre- and post-operative haemoglobin was 1.71 g/dl in G1 and 1.93 g/dl in G2 (p = 0.113). Post-operative complications occurred more frequently in patients in G2 (34.7%) than in patients in G1 (15%), though these differences were also not significant (p = 0.6). The radiographic result was satisfactory in 16 patients (80%) in G1 and 18 patients (78.26%) in G2 (p = 0.5). The clinical result was satisfactory in 15 patients (75%) in G1 and in 17 patients (73.9%) in G2 (p = 0.6). CONCLUSIONS No significant differences were found in terms of surgical time, overall complications, and radiographic or functional outcomes between 3D printing and the conventional technique.
Collapse
Affiliation(s)
- Mohamed Bouabdellah
- Department of Orthopaedic and Traumatology of Charles Nicolle Hospital of Tunis- Tunisia, University of Tunis El Manar, Farhat Hached University Campus n ° 94, ROMMANA , 1068, Tunis, Tunisia.
- GHG-SOTCOT (Tunisian Group of Hip and Knee surgery-Tunisian Society of Orthopaedic Surgery and Traumatology, ROMMANA, Tunisia.
| | - Mohamed Bensalah
- Department of Orthopaedic and Traumatology of Charles Nicolle Hospital of Tunis- Tunisia, University of Tunis El Manar, Farhat Hached University Campus n ° 94, ROMMANA , 1068, Tunis, Tunisia
- GHG-SOTCOT (Tunisian Group of Hip and Knee surgery-Tunisian Society of Orthopaedic Surgery and Traumatology, ROMMANA, Tunisia
| | - Chrif Kamoun
- Department of Orthopaedic and Traumatology of Charles Nicolle Hospital of Tunis- Tunisia, University of Tunis El Manar, Farhat Hached University Campus n ° 94, ROMMANA , 1068, Tunis, Tunisia
| | - Mehdi Bellil
- Department of Orthopaedic and Traumatology of Charles Nicolle Hospital of Tunis- Tunisia, University of Tunis El Manar, Farhat Hached University Campus n ° 94, ROMMANA , 1068, Tunis, Tunisia
- GHG-SOTCOT (Tunisian Group of Hip and Knee surgery-Tunisian Society of Orthopaedic Surgery and Traumatology, ROMMANA, Tunisia
| | - Mondher Kooli
- Department of Orthopaedic and Traumatology of Charles Nicolle Hospital of Tunis- Tunisia, University of Tunis El Manar, Farhat Hached University Campus n ° 94, ROMMANA , 1068, Tunis, Tunisia
| | - Khaled Hadhri
- Department of Orthopaedic and Traumatology of Charles Nicolle Hospital of Tunis- Tunisia, University of Tunis El Manar, Farhat Hached University Campus n ° 94, ROMMANA , 1068, Tunis, Tunisia
| |
Collapse
|
31
|
Goetstouwers S, Kempink D, The B, Eygendaal D, van Oirschot B, van Bergen CJA. Three-dimensional printing in paediatric orthopaedic surgery. World J Orthop 2022; 13:1-10. [PMID: 35096533 PMCID: PMC8771415 DOI: 10.5312/wjo.v13.i1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/29/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is a rapidly evolving and promising field to improve outcomes of orthopaedic surgery. The use of patient-specific 3D-printed models is specifically interesting in paediatric orthopaedic surgery, as limb deformity corrections often require an individual 3D treatment. In this editorial, various operative applications of 3D printing in paediatric orthopaedic surgery are discussed. The technical aspects and the imaging acquisition with computed tomography and magnetic resonance imaging are outlined. Next, there is a focus on the intraoperative applications of 3D printing during paediatric orthopaedic surgical procedures. An overview of various upper and lower limb deformities in paediatrics is given, in which 3D printing is already implemented, including post-traumatic forearm corrections and proximal femoral osteotomies. The use of patient-specific instrumentation (PSI) or guiding templates during the surgical procedure shows to be promising in reducing operation time, intraoperative haemorrhage and radiation exposure. Moreover, 3D-printed models for the use of PSI or patient-specific navigation templates are promising in improving the accuracy of complex limb deformity surgery in children. Lastly, the future of 3D printing in paediatric orthopaedics extends beyond the intraoperative applications; various other medical applications include 3D casting and prosthetic limb replacement. In conclusion, 3D printing opportunities are numerous, and the fast developments are exciting, but more evidence is required to prove its superiority over conventional paediatric orthopaedic surgery.
Collapse
Affiliation(s)
- Sven Goetstouwers
- Department of Orthopaedic Surgery and Sports Medicine, Erasmus Medical Centre/Sophia Children's Hospital, Rotterdam 3015GD, South-Holland, Netherlands
| | - Dagmar Kempink
- Department of Orthopaedic Surgery and Sports Medicine, Erasmus Medical Centre/Sophia Children's Hospital, Rotterdam 3015GD, South-Holland, Netherlands
| | - Bertram The
- Department of Orthopaedic Surgery, Amphia Hospital, Breda 4818CK, North-Brabant, Netherlands
| | - Denise Eygendaal
- Department of Orthopaedic Surgery and Sports Medicine, Erasmus Medical Centre/Sophia Children's Hospital, Rotterdam 3015GD, South-Holland, Netherlands
- Department of Orthopaedic Surgery, Amphia Hospital, Breda 4818CK, North-Brabant, Netherlands
| | | | | |
Collapse
|
32
|
AlSanawi H, Albishi W, AlDhaheri M, AlMugren T, AlAmer N. Chondrosarcoma of the proximal radius treated by wide resection and reconstructed by 3D printed implant: A case report and description of surgical technique. Int J Surg Case Rep 2022; 91:106770. [PMID: 35042125 PMCID: PMC8777282 DOI: 10.1016/j.ijscr.2022.106770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Chondrosarcoma is the second most common primary malignancy of bone that can occur in multiple locations in the skeleton. It has been rarely reported in the proximal radius. While surgical resection is the primary treatment modality for individuals with localized disease, reconstruction can be challenging in the elbow joint due to its complex anatomy. 3D printing technology can be used in such complex cases to restore the normal anatomy after resection. Case presentation We present a case of mesenchymal chondrosarcoma in a 33-year-old male occurring in the proximal radius, restricting his elbow motion. That was resected and reconstructed using 3D modeling. Restoring a functional range of motion without instability. Discussion Many surgical options for chondrosarcoma presented over the years including en bloc resection, resection with or without reconstruction, or amputation. Usage of 3D modeling in the orthopedic surgery field is relatively new and it can be used in pre-operative planning and shortens surgical time. 3D printing in our case helped in obtaining a full range of motion (flexion, extension, pronation, and supination) for the patient. Conclusion It's important to reconstruct elbow joint support structure and function after resection of such a large malignant tumor in young patients. We used 3D printed implant to maintain a functional limb and it was an excellent alternative treatment. Chondrosarcoma occurring in the proximal radius is very rare. Up to our knowledge, this is the second case report. We report a case of proximal radius chondrosarcoma managed by reconstruction with Three-Dimension printed implant. 3D printing in the field of orthopedic surgery is relatively new and has upscaled medical management. A description of a surgical technique to reconstruct proximal radius and maintaining full range of motion of the elbow.
Collapse
Affiliation(s)
- Hisham AlSanawi
- Department of Orthopedic Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Waleed Albishi
- Department of Orthopedic Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed AlDhaheri
- Department of Orthopedic Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Turki AlMugren
- Department of Surgery, King Abdul-aziz Medical City, Riyadh, Saudi Arabia
| | - Naif AlAmer
- Department of Orthopedic Surgery, Ministry of Health, Upper Extremity Fellow, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
33
|
Spek RWA, Schoolmeesters BJA, Oosterhoff JHF, Doornberg JN, van den Bekerom MPJ, Jaarsma RL, Eygendaal D, IJpma F. 3D-printed Handheld Models Do Not Improve Recognition of Specific Characteristics and Patterns of Three-part and Four-part Proximal Humerus Fractures. Clin Orthop Relat Res 2022; 480:150-159. [PMID: 34427569 PMCID: PMC8673959 DOI: 10.1097/corr.0000000000001921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Reliably recognizing the overall pattern and specific characteristics of proximal humerus fractures may aid in surgical decision-making. With conventional onscreen imaging modalities, there is considerable and undesired interobserver variability, even when observers receive training in the application of the classification systems used. It is unclear whether three-dimensional (3D) models, which now can be fabricated with desktop printers at relatively little cost, can decrease interobserver variability in fracture classification. QUESTIONS/PURPOSES Do 3D-printed handheld models of proximal humerus fractures improve agreement among residents and attending surgeons regarding (1) specific fracture characteristics and (2) patterns according to the Neer and Hertel classification systems? METHODS Plain radiographs, as well as two-dimensional (2D) and 3D CT images, were collected from 20 patients (aged 18 years or older) who sustained a three-part or four-part proximal humerus fracture treated at a Level I trauma center between 2015 and 2019. The included images were chosen to comprise images from patients whose fractures were considered as difficult-to-classify, displaced fractures. Consequently, the images were assessed for eight fracture characteristics and categorized according to the Neer and Hertel classifications by four orthopaedic residents and four attending orthopaedic surgeons during two separate sessions. In the first session, the assessment was performed with conventional onscreen imaging (radiographs and 2D and 3D CT images). In the second session, 3D-printed handheld models were used for assessment, while onscreen imaging was also available. Although proximal humerus classifications such as the Neer classification have, in the past, been shown to have low interobserver reliability, we theorized that by receiving direct tactile and visual feedback from 3D-printed handheld fracture models, clinicians would be able to recognize the complex 3D aspects of classification systems reliably. Interobserver agreement was determined with the multirater Fleiss kappa and scored according to the categorical rating by Landis and Koch. To determine whether there was a difference between the two sessions, we calculated the delta (difference in the) kappa value with 95% confidence intervals and a two-tailed p value. Post hoc power analysis revealed that with the current sample size, a delta kappa value of 0.40 could be detected with 80% power at alpha = 0.05. RESULTS Using 3D-printed models in addition to conventional imaging did not improve interobserver agreement of the following fracture characteristics: more than 2 mm medial hinge displacement, more than 8 mm metaphyseal extension, surgical neck fracture, anatomic neck fracture, displacement of the humeral head, more than 10 mm lesser tuberosity displacement, and more than 10 mm greater tuberosity displacement. Agreement regarding the presence of a humeral head-splitting fracture was improved but only to a level that was insufficient for clinical or scientific use (fair to substantial, delta kappa = 0.33 [95% CI 0.02 to 0.64]). Assessing 3D-printed handheld models adjunct to onscreen conventional imaging did not improve the interobserver agreement for pattern recognition according to Neer (delta kappa = 0.02 [95% CI -0.11 to 0.07]) and Hertel (delta kappa = 0.01 [95% CI -0.11 to 0.08]). There were no differences between residents and attending surgeons in terms of whether 3D models helped them classify the fractures, but there were few differences to identify fracture characteristics. However, none of the identified differences improved to almost perfect agreement (kappa value above 0.80), so even those few differences are unlikely to be clinically useful. CONCLUSION Using 3D-printed handheld fracture models in addition to conventional onscreen imaging of three-part and four-part proximal humerus fractures does not improve agreement among residents and attending surgeons on specific fracture characteristics and patterns. Therefore, we do not recommend that clinicians expend the time and costs needed to create these models if the goal is to classify or describe patients' fracture characteristics or pattern, since doing so is unlikely to improve clinicians' abilities to select treatment or estimate prognosis. LEVEL OF EVIDENCE Level III, diagnostic study.
Collapse
Affiliation(s)
- Reinier W. A. Spek
- Department of Orthopaedic Surgery, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Bram J. A. Schoolmeesters
- Department of Orthopaedic Surgery, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Jacobien H. F. Oosterhoff
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Amsterdam University Medical Center, University of Amsterdam, Department of Orthopaedic Surgery, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Job N. Doornberg
- Department of Orthopaedic Surgery, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| | - Michel P. J. van den Bekerom
- Shoulder and Elbow Expertise Centre, Department of Orthopaedic Surgery, OLVG, Amsterdam, the Netherlands
- Department of Human Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Ruurd L. Jaarsma
- Department of Orthopaedic Surgery, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Denise Eygendaal
- Department of Orthopaedic Surgery, Amsterdam University Medical Centre, Amphia Hospital, Breda, the Netherlands
| | - Frank IJpma
- Department of Trauma Surgery, University of Groningen and University Medical Centre Groningen, Groningen, the Netherlands
| |
Collapse
|
34
|
Przedlacka A, Pellino G, Fletcher J, Bello F, Tekkis PP, Kontovounisios C. Current and future role of three-dimensional modelling technology in rectal cancer surgery: A systematic review. World J Gastrointest Surg 2021; 13:1754-1769. [PMID: 35070078 PMCID: PMC8727188 DOI: 10.4240/wjgs.v13.i12.1754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/09/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Three-dimensional (3D) modelling technology translates the patient-specific anatomical information derived from two-dimensional radiological images into virtual or physical 3D models, which more closely resemble the complex environment encountered during surgery. It has been successfully applied to surgical planning and navigation, as well as surgical training and patient education in several surgical specialties, but its uptake lags behind in colorectal surgery. Rectal cancer surgery poses specific challenges due to the complex anatomy of the pelvis, which is difficult to comprehend and visualise.
AIM To review the current and emerging applications of the 3D models, both virtual and physical, in rectal cancer surgery.
METHODS Medline/PubMed, Embase and Scopus databases were searched using the keywords “rectal surgery”, “colorectal surgery”, “three-dimensional”, “3D”, “modelling”, “3D printing”, “surgical planning”, “surgical navigation”, “surgical education”, “patient education” to identify the eligible full-text studies published in English between 2001 and 2020. Reference list from each article was manually reviewed to identify additional relevant papers. The conference abstracts, animal and cadaveric studies and studies describing 3D pelvimetry or radiotherapy planning were excluded. Data were extracted from the retrieved manuscripts and summarised in a descriptive way. The manuscript was prepared and revised in accordance with PRISMA 2009 checklist.
RESULTS Sixteen studies, including 9 feasibility studies, were included in the systematic review. The studies were classified into four categories: feasibility of the use of 3D modelling technology in rectal cancer surgery, preoperative planning and intraoperative navigation, surgical education and surgical device design. Thirteen studies used virtual models, one 3D printed model and 2 both types of models. The construction of virtual and physical models depicting the normal pelvic anatomy and rectal cancer, was shown to be feasible. Within the clinical context, 3D models were used to identify vascular anomalies, for surgical planning and navigation in lateral pelvic wall lymph node dissection and in management of recurrent rectal cancer. Both physical and virtual 3D models were found to be valuable in surgical education, with a preference for 3D printed models. The main limitations of the current technology identified in the studies were related to the restrictions of the segmentation process and the lack of 3D printing materials that could mimic the soft and deformable tissues.
CONCLUSION 3D modelling technology has potential to be utilised in multiple aspects of rectal cancer surgery, however, it is still at the experimental stage of application in this setting.
Collapse
Affiliation(s)
- Anna Przedlacka
- Department of Surgery and Cancer, Imperial College London, London SW10 9NH, United Kingdom
| | - Gianluca Pellino
- Department of Advanced Medical and Surgical Sciences, Università degli Studi della Campania “Luigi Vanvitelli”, Naples 80138, Campania, Italy
- Colorectal Surgery, Vall d'Hebron University Hospital, Barcelona 08029, Spain
- Colorectal Surgery, Royal Marsden NHS Foundation Trust, London SW3 6JJ, United Kingdom
| | - Jordan Fletcher
- Department of Surgery and Cancer, St Mark’s Hospital Academic Institute, Imperial College London, London HA1 3UJ, United Kingdom
| | - Fernando Bello
- Centre for Engagement and Simulation Science, Imperial College London, London SW10 9NH, United Kingdom
| | - Paris P Tekkis
- Department of Surgery and Cancer, Imperial College London, London SW10 9NH, United Kingdom
- Colorectal Surgery, Royal Marsden NHS Foundation Trust, London SW3 6JJ, United Kingdom
- Colorectal Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London SW10 9NH, United Kingdom
| | - Christos Kontovounisios
- Department of Surgery and Cancer, Imperial College London, London SW10 9NH, United Kingdom
- Colorectal Surgery, Royal Marsden NHS Foundation Trust, London SW3 6JJ, United Kingdom
- Colorectal Surgery, Chelsea and Westminster Hospital NHS Foundation Trust, London SW10 9NH, United Kingdom
| |
Collapse
|
35
|
Wong RMY, Wong PY, Liu C, Chung YL, Wong KC, Tso CY, Chow SKH, Cheung WH, Yung PSH, Chui CS, Law SW. 3D printing in orthopaedic surgery: a scoping review of randomized controlled trials. Bone Joint Res 2021; 10:807-819. [PMID: 34923849 PMCID: PMC8696518 DOI: 10.1302/2046-3758.1012.bjr-2021-0288.r2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aims The use of 3D printing has become increasingly popular and has been widely used in orthopaedic surgery. There has been a trend towards an increasing number of publications in this field, but existing literature incorporates limited high-quality studies, and there is a lack of reports on outcomes. The aim of this study was to perform a scoping review with Level I evidence on the application and effectiveness of 3D printing. Methods A literature search was performed in PubMed, Embase, and Web of Science databases. The keywords used for the search criteria were ((3d print*) OR (rapid prototyp*) OR (additive manufactur*)) AND (orthopaedic). The inclusion criteria were: 1) use of 3D printing in orthopaedics, 2) randomized controlled trials, and 3) studies with participants/patients. Risk of bias was assessed with Cochrane Collaboration Tool and PEDro Score. Pooled analysis was performed. Results Overall, 21 studies were included in our study with a pooled total of 932 participants. Pooled analysis showed that operating time (p < 0.001), blood loss (p < 0.001), fluoroscopy times (p < 0.001), bone union time (p < 0.001), pain (p = 0.040), accuracy (p < 0.001), and functional scores (p < 0.001) were significantly improved with 3D printing compared to the control group. There were no significant differences in complications. Conclusion 3D printing is a rapidly developing field in orthopaedics. Our findings show that 3D printing is advantageous in terms of operating time, blood loss, fluoroscopy times, bone union time, pain, accuracy, and function. The use of 3D printing did not increase the risk of complications. Cite this article: Bone Joint Res 2021;10(12):807–819.
Collapse
Affiliation(s)
- Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Pui Yan Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Chaoran Liu
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yik Lok Chung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Kwok Chuen Wong
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Chi Yin Tso
- Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Simon Kwoon-Ho Chow
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Wing-Hoi Cheung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Patrick Shu-Hang Yung
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hong Kong, Hong Kong
| | - Chun Sing Chui
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Sheung Wai Law
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Orthopaedics & Traumatology, Prince of Wales Hospital, Hong Kong, Hong Kong
| |
Collapse
|
36
|
Galán-Olleros M, García-Coiradas J, Llanos S, Valle-Cruz JA, Marco F. Fracture planning is easy: Development of a basic method of digital planning based on the traditional pencil and paper technique. Rev Esp Cir Ortop Traumatol (Engl Ed) 2021; 66:328-340. [PMID: 34366259 DOI: 10.1016/j.recot.2021.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Preoperative planning constitutes a fundamental tool in the management of fractures; however, its practical application is far from the desired, perhaps due to the absence of a basic and simple method, adapted to the current times. We describe a digital planning method, halfway between the traditional and the technological, which preserves its educational essence, allows the understanding of the fracture and the individualization of the osteosynthesis. MATERIAL AND METHODS After the initial analysis of the fracture and the patient's characteristics, different measurements are made on X-ray and CT images with a digital medical imaging software. These images are then copied into a presentation program (Microsoft® PowerPoint or Keynote ©Apple Inc.), in which the main fragments and fracture lines are traced with the computer pointer. These are subsequently moved into a reduced position and the implants for internal fixation are graphically represented together with a guide of the surgical strategy. RESULTS We show 4 cases of different types of fractures operated through reduction and osteosynthesis after preoperative planning according to the described method. The basic points for the surgical planning, logistics, tactics and postoperative radiological results of each case are detailed. CONCLUSIONS Despite rise of advanced planning software, traditional paper and pencil methods are still fundamental, even more so for the trauma surgeon in training. The digital planning method described is very appropriate for this purpose, as it combines the advantages of both methods: simplicity, accessibility, quickness, low-cost, reproducibility, educational character, efficiency and possibility of simulation, corrections and reuse of cases.
Collapse
Affiliation(s)
- M Galán-Olleros
- Unidad de Traumatología y Politraumatizados, Servicio de Traumatología y Cirugía Ortopédica, Hospital Clínico Universitario San Carlos, Madrid, España.
| | - J García-Coiradas
- Unidad de Traumatología y Politraumatizados, Servicio de Traumatología y Cirugía Ortopédica, Hospital Clínico Universitario San Carlos, Madrid, España
| | - S Llanos
- Unidad de Traumatología y Politraumatizados, Servicio de Traumatología y Cirugía Ortopédica, Hospital Clínico Universitario San Carlos, Madrid, España
| | - J A Valle-Cruz
- Unidad de Traumatología y Politraumatizados, Servicio de Traumatología y Cirugía Ortopédica, Hospital Clínico Universitario San Carlos, Madrid, España
| | - F Marco
- Unidad de Traumatología y Politraumatizados, Servicio de Traumatología y Cirugía Ortopédica, Hospital Clínico Universitario San Carlos, Madrid, España; Departamento de Cirugía, Facultad de Medicina de la Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
37
|
Point-of-care manufacturing: a single university hospital's initial experience. 3D Print Med 2021; 7:11. [PMID: 33890198 PMCID: PMC8061881 DOI: 10.1186/s41205-021-00101-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Background The integration of 3D printing technology in hospitals is evolving toward production models such as point-of-care manufacturing. This study aims to present the results of the integration of 3D printing technology in a manufacturing university hospital. Methods Observational, descriptive, retrospective, and monocentric study of 907 instances of 3D printing from November 2015 to March 2020. Variables such as product type, utility, time, or manufacturing materials were analyzed. Results Orthopedic Surgery and Traumatology, Oral and Maxillofacial Surgery, and Gynecology and Obstetrics are the medical specialties that have manufactured the largest number of processes. Working and printing time, as well as the amount of printing material, is different for different types of products and input data. The most common printing material was polylactic acid, although biocompatible resin was introduced to produce surgical guides. In addition, the hospital has worked on the co-design of custom-made implants with manufacturing companies and has also participated in tissue bio-printing projects. Conclusions The integration of 3D printing in a university hospital allows identifying the conceptual evolution to “point-of-care manufacturing.”
Collapse
|
38
|
Calvo-Haro JA, Pascau J, Mediavilla-Santos L, Sanz-Ruiz P, Sánchez-Pérez C, Vaquero-Martín J, Perez-Mañanes R. Conceptual evolution of 3D printing in orthopedic surgery and traumatology: from "do it yourself" to "point of care manufacturing". BMC Musculoskelet Disord 2021; 22:360. [PMID: 33863319 PMCID: PMC8051827 DOI: 10.1186/s12891-021-04224-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND 3D printing technology in hospitals facilitates production models such as point-of-care manufacturing. Orthopedic Surgery and Traumatology is the specialty that can most benefit from the advantages of these tools. The purpose of this study is to present the results of the integration of 3D printing technology in a Department of Orthopedic Surgery and Traumatology and to identify the productive model of the point-of-care manufacturing as a paradigm of personalized medicine. METHODS Observational, descriptive, retrospective and monocentric study of a total of 623 additive manufacturing processes carried out in a Department of Orthopedic Surgery and Traumatology from November 2015 to March 2020. Variables such as product type, utility, time or materials for manufacture were analyzed. RESULTS The areas of expertise that have performed more processes are Traumatology, Reconstructive and Orthopedic Oncology. Pre-operative planning is their primary use. Working and 3D printing hours, as well as the amount of 3D printing material used, vary according to the type of product or material delivered to perform the process. The most commonly used 3D printing material for manufacturing is polylactic acid, although biocompatible resin has been used to produce surgical guides. In addition, the hospital has worked on the co-design of customized implants with manufacturing companies. CONCLUSIONS The integration of 3D printing in a Department of Orthopedic Surgery and Traumatology allows identifying the conceptual evolution from "Do-It-Yourself" to "POC manufacturing".
Collapse
Affiliation(s)
- Jose Antonio Calvo-Haro
- Orthopaedic Surgery and Traumatology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, Postal code, 28007, Madrid, Spain.
- Advanced Planning and 3D 1Manufacturing Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Faculty of Medicine, Department of Surgery, Universidad Complutense, Madrid, Spain.
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain.
| | - Javier Pascau
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid, Spain
| | - Lydia Mediavilla-Santos
- Orthopaedic Surgery and Traumatology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, Postal code, 28007, Madrid, Spain
| | - Pablo Sanz-Ruiz
- Orthopaedic Surgery and Traumatology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, Postal code, 28007, Madrid, Spain
- Faculty of Medicine, Department of Surgery, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Coral Sánchez-Pérez
- Orthopaedic Surgery and Traumatology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, Postal code, 28007, Madrid, Spain
| | - Javier Vaquero-Martín
- Orthopaedic Surgery and Traumatology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, Postal code, 28007, Madrid, Spain
- Faculty of Medicine, Department of Surgery, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Rubén Perez-Mañanes
- Orthopaedic Surgery and Traumatology Department, Hospital General Universitario Gregorio Marañón, Calle Doctor Esquerdo, 46, Postal code, 28007, Madrid, Spain
- Advanced Planning and 3D 1Manufacturing Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Faculty of Medicine, Department of Surgery, Universidad Complutense, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| |
Collapse
|
39
|
Andrés-Cano P, Calvo-Haro J, Fillat-Gomà F, Andrés-Cano I, Perez-Mañanes R. Role of the orthopaedic surgeon in 3D printing: current applications and legal issues for a personalized medicine. Rev Esp Cir Ortop Traumatol (Engl Ed) 2021. [DOI: 10.1016/j.recote.2021.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
40
|
Wähnert D, Frank A, Ueberberg J, Heilmann LF, Sauzet O, Raschke MJ, Gehweiler D. Development and first biomechanical validation of a score to predict bone implant interface stability based on clinical qCT scans. Sci Rep 2021; 11:3273. [PMID: 33558603 PMCID: PMC7870929 DOI: 10.1038/s41598-021-82788-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/22/2021] [Indexed: 11/29/2022] Open
Abstract
Sufficient implant anchoring in osteoporotic bone is one major challenge in trauma and orthopedic surgery. In these cases, preoperative planning of osteosynthesis is becoming increasingly important. This study presents the development and first biomechanical validation of a bone-implant-anchorage score based on clinical routine quantitative computer tomography (qCT) scans. 10 pairs of fresh frozen femora (mean age 77.4 years) underwent clinical qCT scans after placing 3 referential screws (for matching with the second scan). Afterwards, three 4.5 mm cortical screws (DePuy Synthes, Zuchwil, Switzerland) were placed in each distal femur in the dia-metaphyseal transition followed by the second CT scan. The femur was segmented using thresholding and its outer shape was visualized as a surface model. A 3D model of the cortex screw in STL format was used to model the screw surface precisely. For each femur, the 3 cortex screw models were exactly positioned at the locations previously determined using the second CT scan. The BMD value was calculated at the center of each triangle as an interpolation from the measured values at the three vertices (triangle corners) in the CT. Scores are based on the sum of all the triangles’ areas multiplied by their BMD values. Four different scores were calculated. A screw pull-out test was performed until loss of resistance. A quadratic model adequately describes the relation between all the scores and pull-out values. The square of the best score explains just fewer than 70% of the total variance of the pull-out values and the standardized residual which were approximately normally distributed. In addition, there was a significant correlation between this score and the peak pull-out force (p < 0.001). The coefficient of determination was 0.82. The presented score has the potential to improve preoperative planning by adding the mechanical to the anatomical dimension when planning screw placement.
Collapse
Affiliation(s)
- Dirk Wähnert
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building W1, 48149, Muenster, Germany. .,Department of Trauma and Orthopedic Surgery, Protestant Hospital of Bethel Foundation, University Hospital OWL of Bielefeld University, Campus Bielefeld-Bethel, Burgsteig 13, 33617, Bielefeld, Germany.
| | - Andre Frank
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building W1, 48149, Muenster, Germany
| | - Johanna Ueberberg
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building W1, 48149, Muenster, Germany
| | - Lukas F Heilmann
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building W1, 48149, Muenster, Germany
| | - Odile Sauzet
- School of Public Health and Centre for Statistics, University Bielefeld, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Michael J Raschke
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building W1, 48149, Muenster, Germany
| | - Dominic Gehweiler
- Department of Trauma, Hand, and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building W1, 48149, Muenster, Germany.,AO Research Institute Davos, Clavadelerstraße 8, 7270, Davos, Switzerland
| |
Collapse
|
41
|
Raza M, Murphy D, Gelfer Y. The effect of three-dimensional (3D) printing on quantitative and qualitative outcomes in paediatric orthopaedic osteotomies: a systematic review. EFORT Open Rev 2021; 6:130-138. [PMID: 33828856 PMCID: PMC8022016 DOI: 10.1302/2058-5241.6.200092] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Three-dimensional (3D) printing technology is increasingly being utilized in various surgical specialities. In paediatric orthopaedics it has been applied in the pre-operative and intra-operative stages, allowing complex deformities to be replicated and patient-specific instrumentation to be used. This systematic review analyses the literature on the effect of 3D printing on paediatric orthopaedic osteotomy outcomes.A systematic review of several databases was conducted according to PRISMA guidelines. Studies evaluating the use of 3D printing technology in orthopaedic osteotomy procedures in children (aged ≤ 16 years) were included. Spinal and bone tumour surgery were excluded. Data extracted included demographics, disease pathology, target bone, type of technology, imaging modality used, qualitative/quantitative outcomes and follow-up. Articles were further categorized as either 'pre-operative' or 'intra-operative' applications of the technology.Twenty-two articles fitting the inclusion criteria were included. The reported studies included 212 patients. There were five articles of level of evidence 3 and 17 level 4.A large variety of outcomes were reported with the most commonly used being operating time, fluoroscopic exposure and intra-operative blood loss.A significant difference in operative time, fluoroscopic exposure, blood loss and angular correction was found in the 'intra-operative' application group. No significant difference was found in the 'pre-operative' category.Despite a relatively low evidence base pool of studies, our aggregate data demonstrate a benefit of 3D printing technology in various deformity correction applications, especially when used in the 'intra-operative' setting. Further research including paediatric-specific core outcomes is required to determine the potential benefit of this novel addition. Cite this article: EFORT Open Rev 2021;6:130-138. DOI: 10.1302/2058-5241.6.200092.
Collapse
Affiliation(s)
- Mohsen Raza
- Department of Trauma & Orthopaedics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Daniel Murphy
- Department of Trauma & Orthopaedics, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Yael Gelfer
- Department of Trauma & Orthopaedics, St George's University Hospitals NHS Foundation Trust, London, UK.,St George's, University of London, London, UK
| |
Collapse
|
42
|
McMenamin PG, Hussey D, Chin D, Alam W, Quayle MR, Coupland SE, Adams JW. The reproduction of human pathology specimens using three-dimensional (3D) printing technology for teaching purposes. MEDICAL TEACHER 2021; 43:189-197. [PMID: 33103933 DOI: 10.1080/0142159x.2020.1837357] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The teaching of medical pathology has undergone significant change in the last 30-40 years, especially in the context of employing bottled specimens or 'pots' in classroom settings. The reduction in post-mortem based teaching in medical training programs has resulted in less focus being placed on the ability of students to describe the gross anatomical pathology of specimens. Financial considerations involved in employing staff to maintain bottled specimens, space constraints and concerns with health and safety of staff and student laboratories have meant that many institutions have decommissioned their pathology collections. This report details how full-colour surface scanning coupled with CT scanning and 3 D printing allows the digital archiving of gross pathological specimens and the production of reproductions or replicas of preserved human anatomical pathology specimens that obviates many of the above issues. With modern UV curable resin printing technology, it is possible to achieve photographic quality accurate replicas comparable to the original specimens in many aspects except haptic quality. Accurate 3 D reproductions of human pathology specimens offer many advantages over traditional bottled specimens including the capacity to generate multiple copies and their use in any educational setting giving access to a broader range of potential learners and users.
Collapse
Affiliation(s)
- Paul G McMenamin
- Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Daniel Hussey
- Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Daniel Chin
- Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Waafiqa Alam
- Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Michelle R Quayle
- Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Justin W Adams
- Centre for Human Anatomy Education, Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Australia
| |
Collapse
|
43
|
Time Reduction by Prebending Osteosynthesis Plates Using 3D-Printed Anatomical Models, In Patients Treated With Open Reduction and Internal Fixation. J Craniofac Surg 2021; 32:1491-1493. [PMID: 33464778 DOI: 10.1097/scs.0000000000007451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION The incidence of facial bones fractures is 18 to 32 for each 100,000 inhabitants. The most affected population are young working people. Fractures are most commonly caused by assaults and motor vehicle accidents. Its cost of care reaches 1.06 billion dollars. Premodeling osteosynthesis plates with anatomical models can decrease surgical time, bleeding, and increase patient satisfaction. This study aims to evaluate the impact of premodeled osteosynthesis plates, using anatomical models in patients with facial fractures. MATERIAL AND METHODS Patients with facial fractures treated by open reduction and internal fixation were included-Group A without premolding plates and Group B with premolding. The variables studied were: age, sex, etiology of the fractures, number of fractures, among other variables that reflect the quality of the results. RESULTS A total of 17 osteosynthesis plates were included in 6 patients. The age was 22 to 47 years; all patients were male. The maximum surgery time was 129 to 300 minutes. The average time to start work was 4.8 weeks. When comparing the variables between the groups, we found no difference between the groups for bleeding P = 0.24, the start of work P = 0.19, the time of surgery P = 0.082, or for osteosynthesis time P = 0.15. There was only a significant difference in patient satisfaction, P = 0.04. CONCLUSIONS The evidence collected shows that premodeling the plates only improves patients' satisfaction among facial fractures treated by open reduction and internal fixation.
Collapse
|
44
|
Branson TM, Shapiro L, Venter RG. Observation of Patients' 3D Printed Anatomical Features and 3D Visualisation Technologies Improve Spatial Awareness for Surgical Planning and in-Theatre Performance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1334:23-37. [PMID: 34476743 DOI: 10.1007/978-3-030-76951-2_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Improved spatial awareness is vital in anatomy education as well as in many areas of medical practice. Many healthcare professionals struggle with the extrapolation of 2D data to its locus within the 3D volume of the anatomy. In this chapter, we outline the use of touch as an important sensory modality in the observation of 3D forms, including anatomical parts, with the specific neuroscientific underpinnings in this regard being described. We explore how improved spatial awareness is directly linked to improved spatial skill. The reader is offered two practical exercises that lead to improved spatial awareness for application in exploring external 3D anatomy volume as well as internal 3D anatomy volume. These exercises are derived from the Haptico-visual observation and drawing (HVOD) method. The resulting cognitive improvement in spatial awareness that these exercises engender can be of benefit to students in their study of anatomy and for application by healthcare professionals in many aspects of their medical practice. The use of autostereoscopic visualisation technology (AS3D) to view the anatomy from DICOM data, in combination with the haptic exploration of a 3D print (3Dp) of the same stereoscopic on-screen image, is recommended as a practice for improved understanding of any anatomical part or feature. We describe a surgical innovation that relies on the haptic perception of patients' 3D printed (3Dp) anatomical features from patient DICOM data, for improved surgical planning and in-theatre surgical performance. Throughout the chapter, underlying neuroscientific correlates to haptic and visual observation, memory, working memory, and cognitive load are provided.
Collapse
Affiliation(s)
- Toby M Branson
- Department of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, SA, Australia
| | - Leonard Shapiro
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa.
| | - Rudolph G Venter
- Faculty of Medicine and Health Science, Division of Orthopaedic Surgery, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
45
|
Andrés-Cano P, Calvo-Haro JA, Fillat-Gomà F, Andrés-Cano I, Perez-Mañanes R. Role of the orthopaedic surgeon in 3D printing: current applications and legal issues for a personalized medicine. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020; 65:138-151. [PMID: 33298378 DOI: 10.1016/j.recot.2020.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/14/2020] [Indexed: 12/16/2022] Open
Abstract
3D printing (I3D) is an additive manufacturing technology with a growing interest in medicine and especially in the specialty of orthopaedic surgery and traumatology. There are numerous applications that add value to the personalised treatment of patients: advanced preoperative planning, surgeries with specific tools for each patient, customised orthotic treatments, personalised implants or prostheses and innovative development in the field of bone and cartilage tissue engineering. This paper provides an update on the role that the orthopaedic surgeon and traumatologist plays as a user and prescriber of this technology and a review of the stages required for the correct integration of I3D into the hospital care flow, from the necessary resources to the current legal recommendations.
Collapse
Affiliation(s)
- P Andrés-Cano
- Departamento de Cirugía Ortopédica y Traumatología, Hospital Universitario Virgen del Rocío, Sevilla, España.
| | - J A Calvo-Haro
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España; Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| | - F Fillat-Gomà
- Unidad de Planificación Quirúrgica 3D, Departamento de Cirugía Ortopédica y Traumatología, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, Sabadell, Barcelona, España
| | - I Andrés-Cano
- Departamento de Radiodiagnóstico Hospital Universitario Puerta del Mar, Cádiz, España
| | - R Perez-Mañanes
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España; Departamento de Cirugía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
46
|
Smoczok M, Starszak K, Starszak W. 3D Printing as a Significant Achievement for Application in Posttraumatic Surgeries - A Literature Review. Curr Med Imaging 2020; 17:814-819. [PMID: 32386498 DOI: 10.2174/1573405616666200510003811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND 3D printing is increasingly used in many fields of medicine. The broadening of knowledge in this field and the cooperation of doctors and engineers increase the interest in this technology and results in attempts to implement it at every stage of the treatment. OBJECTIVE The review aims to summarize the current literature on the use of 3D printing technology in the treatment of post-trauma patients. METHODS A review of available scientific publications in PubMed regarding 3D printing and its application in the context of posttraumatic procedures was carried out. Clinical Trials and Reviews from the period 2014-2019 (6-year period) were taken into consideration. The database was searched for "Printing", "ThreeDimensional" [MAJR] [MeSH Term]. Finally, 48 studies have been included in our review article. RESULTS 3D printing technology has a number of applications in patients who have suffered injuries. 3D printing has found application in the preparation of procedures, accurate visualization of occurring injuries and complications, education of doctors and patients, prototyping, creation of synthetic scaffolding, production and implementation of target implants and rehabilitation. CONCLUSION 3D printing is increasingly used in providing for posttraumatic patients. It is necessary to conduct further research in this area and to provide development opportunities regarding biopolymers and bioprinting. It is also necessary to improve cooperation between doctors and engineers and to create new centres that can comprehensively use 3D printing - from imaging diagnostics to the production of implants and their surgical use.
Collapse
Affiliation(s)
- Michał Smoczok
- Department of Biophysics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Krzysztof Starszak
- Department of Orthopaedics, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Weronika Starszak
- Students' Scientific Society, Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|