1
|
Campos MS, Volpon JB, Ximenez JPB, Franttini AP, Dalloul CE, Sousa-Neto MD, Silva RA, Kacena MA, Zamarioli A. Vibration therapy as an effective approach to improve bone healing in diabetic rats. Front Endocrinol (Lausanne) 2022; 13:909317. [PMID: 36060973 PMCID: PMC9437439 DOI: 10.3389/fendo.2022.909317] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effects of vibration therapy on fracture healing in diabetic and non-diabetic rats. METHODS 148 rats underwent fracture surgery and were assigned to four groups: (1) SHAM: weight-matched non-diabetic rats, (2) SHAM+VT: non-diabetic rats treated with vibration therapy (VT), (3) DM: diabetic rats, and (4) DM+VT: diabetic rats treated with VT. Thirty days after diabetes induction with streptozotocin, animals underwent bone fracture, followed by surgical stabilization. Three days after bone fracture, rats began VT. Bone healing was assessed on days 14 and 28 post-fracture by serum bone marker analysis, and femurs collected for dual-energy X-ray absorptiometry, micro-computed tomography, histology, and gene expression. RESULTS Our results are based on 88 animals. Diabetes led to a dramatic impairment of bone healing as demonstrated by a 17% reduction in bone mineral density and decreases in formation-related microstructural parameters compared to non-diabetic control rats (81% reduction in bone callus volume, 69% reduction in woven bone fraction, 39% reduction in trabecular thickness, and 45% in trabecular number). These changes were accompanied by a significant decrease in the expression of osteoblast-related genes (Runx2, Col1a1, Osx), as well as a 92% reduction in serum insulin-like growth factor I (IGF-1) levels. On the other hand, resorption-related parameters were increased in diabetic rats, including a 20% increase in the callus porosity, a 33% increase in trabecular separation, and a 318% increase in serum C terminal telopeptide of type 1 collagen levels. VT augmented osteogenic and chondrogenic cell proliferation at the fracture callus in diabetic rats; increased circulating IGF-1 by 668%, callus volume by 52%, callus bone mineral content by 90%, and callus area by 72%; and was associated with a 19% reduction in circulating receptor activator of nuclear factor kappa beta ligand (RANK-L). CONCLUSIONS Diabetes had detrimental effects on bone healing. Vibration therapy was effective at counteracting the significant disruption in bone repair induced by diabetes, but did not improve fracture healing in non-diabetic control rats. The mechanical stimulus not only improved bone callus quality and quantity, but also partially restored the serum levels of IGF-1 and RANK-L, inducing bone formation and mineralization, thus creating conditions for adequate fracture repair in diabetic rats.
Collapse
Affiliation(s)
- Maysa S. Campos
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - José B. Volpon
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - João Paulo B. Ximenez
- Laboratory of Molecular Biology, Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, Ribeirão Preto, SP, Brazil
- School of Pharmaceutical Sciences of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Paula Franttini
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Christopher E. Dalloul
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Manoel D. Sousa-Neto
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Raquel A. Silva
- School of Dentistry of Ribeirão Preto - University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Melissa A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN, United States
| | - Ariane Zamarioli
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
- *Correspondence: Ariane Zamarioli,
| |
Collapse
|
2
|
Administration of Human Non-Diabetic Mesenchymal Stromal Cells to a Murine Model of Diabetic Fracture Repair: A Pilot Study. Cells 2020; 9:cells9061394. [PMID: 32503335 PMCID: PMC7348854 DOI: 10.3390/cells9061394] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/05/2023] Open
Abstract
Individuals living with type 1 diabetes mellitus may experience an increased risk of long bone fracture. These fractures are often slow to heal, resulting in delayed reunion or non-union. It is reasonable to theorize that the underlying cause of these diabetes-associated osteopathies is faulty repair dynamics as a result of compromised bone marrow progenitor cell function. Here it was hypothesized that the administration of non-diabetic, human adult bone marrow-derived mesenchymal stromal cells (MSCs) would enhance diabetic fracture healing. Human MSCs were locally introduced to femur fractures in streptozotocin-induced diabetic mice, and the quality of de novo bone was assessed eight weeks later. Biodistribution analysis demonstrated that the cells remained in situ for three days following administration. Bone bridging was evident in all animals. However, a large reparative callus was retained, indicating non-union. µCT analysis elucidated comparable callus dimensions, bone mineral density, bone volume/total volume, and volume of mature bone in all groups that received cells as compared to the saline-treated controls. Four-point bending evaluation of flexural strength, flexural modulus, and total energy to re-fracture did not indicate a statistically significant change as a result of cellular administration. An ex vivo lymphocytic proliferation recall assay indicated that the xenogeneic administration of human cells did not result in an immune response by the murine recipient. Due to this dataset, the administration of non-diabetic bone marrow-derived MSCs did not support fracture healing in this pilot study.
Collapse
|
3
|
Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci 2019; 20:ijms20194873. [PMID: 31575077 PMCID: PMC6801685 DOI: 10.3390/ijms20194873] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term exposure to a diabetic environment leads to changes in bone metabolism and impaired bone micro-architecture through a variety of mechanisms on molecular and structural levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental effects on bone health. Alternative fracture risk assessment tools may be needed to accurately determine fracture risk in patients living with diabetes mellitus. Currently, there is no conclusive model explaining the mechanism of action of diabetes mellitus on bone health, particularly in view of progenitor cells. In this review, the best available literature on the impact of diabetes mellitus on bone health in vitro and in vivo is summarised with an emphasis on future translational research opportunities in this field.
Collapse
Affiliation(s)
- Cliodhna E Murray
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| |
Collapse
|
4
|
The Effect of Unfocused Extracorporeal Shock Wave Therapy on Bone Defect Healing in Diabetics. J Craniofac Surg 2018; 29:1081-1086. [DOI: 10.1097/scs.0000000000004303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
5
|
Limirio PHJO, da Rocha Junior HA, de Morais RB, Hiraki KRN, Balbi APC, Soares PBF, Dechichi P. Influence of hyperbaric oxygen on biomechanics and structural bone matrix in type 1 diabetes mellitus rats. PLoS One 2018; 13:e0191694. [PMID: 29451877 PMCID: PMC5815582 DOI: 10.1371/journal.pone.0191694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Background The aim of this study was to evaluate the biomechanics and structural bone matrix in diabetic rats subjected to hyperbaric oxygen therapy (HBO). Methods Twenty-four male rats were divided into the following groups: Control; Control + HBO; Diabetic, and Diabetic + HBO. Diabetes was induced with streptozotocin (STZ) in the diabetic Groups. After 30 days, HBO was performed every 48h in HBO groups and all animals were euthanized 60 days after diabetic induction. The femur was submitted to a biomechanical (maximum strength, energy-to-failure and stiffness) and Attenuated Total Reflectance Fourier transform infrared (ATR-FTIR) analyses (crosslink ratio, crystallinity index, matrix-to-mineral ratio: Amide I + II/Hydroxyapatite (M:MI) and Amide III + Collagen/HA (M:MIII)). Results In biomechanical analysis, diabetic animals showed lower values of maximum strength, energy and stiffness than non-diabetic animals. However, structural strength and stiffness were increased in groups with HBO compared with non-HBO. ATR-FTIR analysis showed decreased collagen maturity in the ratio of crosslink peaks in diabetic compared with the other groups. The bone from the diabetic groups showed decreased crystallinity compared with non-diabetic groups. M:MI showed no statistical difference between groups. However, M:MIII showed an increased matrix mineral ratio in diabetic+HBO and control+HBO compared with control and diabetic groups. Correlations between mechanical and ATR-FTIR analyses showed significant positive correlation between collagen maturity and stiffness. Conclusions Diabetes decreased collagen maturation and the mineral deposition process, thus reducing biomechanical properties. Moreover, the study showed that HBO improved crosslink maturation and increased maximum strength and stiffness in the femur of T1DM animals.
Collapse
Affiliation(s)
| | | | | | | | - Ana Paula Coelho Balbi
- Department of Physiology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | | | - Paula Dechichi
- Department of Histology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
6
|
Zhang D, Hu M, Chu T, Lin L, Wang J, Li X, Ke HZ, Qin YX. Sclerostin antibody prevented progressive bone loss in combined ovariectomized and concurrent functional disuse. Bone 2016; 87:161-8. [PMID: 26868528 PMCID: PMC4862887 DOI: 10.1016/j.bone.2016.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/16/2022]
Abstract
Osteoporosis is characterized by low bone mass and compromised trabecular architecture, and is commonly occurred in post-menopausal women with estrogen deficiency. In addition, prolonged mechanical unloading, i.e., long term bed rest, can exaggerate the bone loss. Sclerostin is a Wnt signaling antagonist and acts as a negative regulator for bone formation. A sclerostin-neutralizing antibody (Scl-Ab) increased bone mineral density in women with postmenopausal osteoporosis and healthy men. The objective of this study was to characterize the condition of bone loss in ovariectomized (OVX) rats with concurrent mechanical unloading and evaluate the effect of sclerostin antibody treatment in mitigating the prospective severe bone loss conditions in this model. Four-month-old OVX- or sham-operated female SD rats were used in this study. They were subjected to functional disuse induced by hind-limb suspension (HLS) or free ambulance after 2days of arrival. Subcutaneous injections with either vehicle or Scl-Ab at 25mg/kg were made twice per week for 5weeks from the time of HLS. μCT analyses demonstrated a significant decrease in distal metaphyseal trabecular architecture integrity with HLS, OVX and HLS+OVX (bone volume fraction decreased by 29%, 71% and 87% respectively). The significant improvements of various trabecular bone parameters (bone volume fraction increased by 111%, 229% and 297% respectively as compared with placebo group) with the administration of Scl-Ab are associated with stronger mechanical property and increased bone formation by histomorphometry. These results together indicate that Scl-Ab prevented the loss of trabecular bone mass and cortical bone strength in OVX rat model with concurrent mechanical unloading. The data suggested that monoclonal sclerostin-neutralizing antibody represents a promising therapeutic approach for severe osteoporosis induced by estrogen deficiency with concurrent mechanical unloading.
Collapse
Affiliation(s)
- Dongye Zhang
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Minyi Hu
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Timothy Chu
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Liangjun Lin
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Jingyu Wang
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States
| | - Xiaodong Li
- Dept. of Metabolic Disorders, Amgen, Inc., Thousand Oaks, CA, United States
| | | | - Yi-Xian Qin
- Dept. of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, United States.
| |
Collapse
|
7
|
Qian C, Zhu C, Yu W, Jiang X, Zhang F. High-Fat Diet/Low-Dose Streptozotocin-Induced Type 2 Diabetes in Rats Impacts Osteogenesis and Wnt Signaling in Bone Marrow Stromal Cells. PLoS One 2015; 10:e0136390. [PMID: 26296196 PMCID: PMC4546646 DOI: 10.1371/journal.pone.0136390] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/04/2015] [Indexed: 01/11/2023] Open
Abstract
Bone regeneration disorders are a significant problem in patients with type 2 diabetes mellitus. Bone marrow stromal cells (BMSCs) are recognized as ideal seed cells for tissue engineering because they can stimulate osteogenesis during bone regeneration. Therefore, the aim of this study was to investigate the osteogenic potential of BMSCs derived from type 2 diabetic rats and the pathogenic characteristics of dysfunctional BMSCs that affect osteogenesis. BMSCs were isolated from normal and high-fat diet+streptozotocin-induced type 2 diabetic rats. Cell metabolic activity, alkaline phosphatase (ALP) activity, mineralization and osteogenic gene expression were reduced in the type 2 diabetic rat BMSCs. The expression levels of Wnt signaling genes, such as β-catenin, cyclin D1 and c-myc, were also significantly decreased in the type 2 diabetic rat BMSCs, but the expression of GSK3β remained unchanged. The derived BMSCs were cultured on calcium phosphate cement (CPC) scaffolds and placed subcutaneously into nude mice for eight weeks; they were detected at a low level in newly formed bone. The osteogenic potential of the type 2 diabetic rat BMSCs was not impaired by the culture environment, but it was impaired by inhibition of the Wnt signaling pathway, likely due to an insufficient accumulation of β-catenin rather than because of GSK3β stimulation. Using BMSCs derived from diabetic subjects could offer an alternative method of regenerating bone together with the use of supplementary growth factors to stimulate the Wnt signaling pathway.
Collapse
MESH Headings
- Alkaline Phosphatase/genetics
- Alkaline Phosphatase/metabolism
- Animals
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Calcium Phosphates/chemistry
- Cyclin D1/genetics
- Cyclin D1/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Gene Expression Regulation
- Glycogen Synthase Kinase 3/genetics
- Glycogen Synthase Kinase 3/metabolism
- Glycogen Synthase Kinase 3 beta
- Male
- Mesenchymal Stem Cell Transplantation
- Mesenchymal Stem Cells/drug effects
- Mesenchymal Stem Cells/metabolism
- Mesenchymal Stem Cells/pathology
- Mice
- Mice, Nude
- Osteogenesis/genetics
- Primary Cell Culture
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- Rats
- Rats, Sprague-Dawley
- Streptozocin
- Transplantation, Heterologous
- Wnt Signaling Pathway
Collapse
Affiliation(s)
- Chao Qian
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
| | - Chenyuan Zhu
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
| | - Weiqiang Yu
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
| | - Xinquan Jiang
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
- * E-mail: (FZ); (XJ)
| | - Fuqiang Zhang
- Department of Prosthodontics, School of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology. Shanghai, 200011, People’s Republic of China
- * E-mail: (FZ); (XJ)
| |
Collapse
|
8
|
Bortolin RH, da Graça Azevedo Abreu BJ, Abbott Galvão Ururahy M, Costa de Souza KS, Bezerra JF, Bezerra Loureiro M, da Silva FS, Marques DEDS, Batista AADS, Oliveira G, Luchessi AD, Lima VMGDM, Miranda CES, Lia Fook MV, Almeida MDG, de Rezende LA, de Rezende AA. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats. PLoS One 2015; 10:e0125349. [PMID: 25933189 PMCID: PMC4416905 DOI: 10.1371/journal.pone.0125349] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/16/2015] [Indexed: 02/01/2023] Open
Abstract
Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days) type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM), and T1DM plus zinc supplementation (T1DMS). Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus), and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic and protective effect of zinc under chronic diabetic conditions. Furthermore, these results indicate that zinc supplementation could act as a complementary therapy in chronic T1DM.
Collapse
MESH Headings
- Animals
- Biomechanical Phenomena
- Bone Density/drug effects
- Bone Resorption/prevention & control
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/diet therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 1/diet therapy
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/pathology
- Dietary Supplements
- Elastic Modulus
- Femur/drug effects
- Femur/metabolism
- Femur/pathology
- Gene Expression Regulation
- Humans
- Male
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Osteocalcin/genetics
- Osteocalcin/metabolism
- Osteoprotegerin/genetics
- Osteoprotegerin/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Streptozocin
- Tibia/drug effects
- Tibia/metabolism
- Tibia/pathology
- Zinc/administration & dosage
Collapse
Affiliation(s)
- Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Marcela Abbott Galvão Ururahy
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Karla Simone Costa de Souza
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - João Felipe Bezerra
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Melina Bezerra Loureiro
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Flávio Santos da Silva
- Department of Morphology, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Gisele Oliveira
- Department of Chemistry, University of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
| | - André Ducati Luchessi
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Marcus Vinicius Lia Fook
- Laboratory of Evaluation and Development of Biomaterials, Federal University of Campina Grande, Campina Grande, Paraiba, Brazil
| | - Maria das Graças Almeida
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | - Adriana Augusto de Rezende
- Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- * E-mail:
| |
Collapse
|