1
|
Zeng X, Deng C, Liang Y, Fu J, Zhang S, Ni T. Ecological risk evaluation and sensitivity analysis of heavy metals on soil organisms under human activities in the Tibet Plateau, China. PLoS One 2023; 18:e0285116. [PMID: 37535614 PMCID: PMC10399888 DOI: 10.1371/journal.pone.0285116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/16/2023] [Indexed: 08/05/2023] Open
Abstract
The Tibetan Plateau (TP), once considered a pristine environment, is now facing increased heavy metal pollution due to human activities, causing unprecedented ecological risks to soil organisms. However, little is known about the sensitivity and tolerance of different soil organisms to heavy metal toxicity in the high-altitude areas of the TP under the background of human activity intensity and future risk control priorities. In this study, we conducted an ecological risk assessment and threshold calculation for 10 heavy metals in soil for typical soil organisms, including Cd, Co, Cr, Cu, Ni, Pb, Zn, Mn, Sb, and Sn, using the species sensitivity distribution (SSD) method in the zone between Ranwu town and Renlongba glacier on the TP. The results revealed that most sampling sites had average levels of Cd, Sb and Ni exceeding their regional soil environmental background values and were the major contaminants. Impressively, the hitherto undeveloped Renlungba Glacier showed relatively high contamination levels of Sb and Ni. From the view of sensitivity differences, the toxicity risks of Cd, Cr, Cu, Ni and Pb were higher for terrestrial plants than for soil invertebrates based on the fitted heavy metal SSD curve trends. In terms of the ecological risk level, the average potentially affected fraction values of Zn and Ni reached 18.5% and 17.0%, respectively, with significant ecological risk at a few sampling sites. In terms of ecological risk thresholds, the Cd concentration at the 5% hazard concentration (HC5) control level was 0.05 mg/kg, which was the heavy metal with the highest risk in this study. Comparing the HC5 values of each heavy metal with the limit values in the current Chinese soil environmental quality standards, the existing administrative policies as a whole lack a powerful prevention of the potential ecological risk posed by heavy metals to soil organisms.
Collapse
Affiliation(s)
- Xia Zeng
- School of Geography and Ocean Science of Nanjing University, Nanjing, China
| | - Cai Deng
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, China
| | - Ying Liang
- School of the Environment, Nanjing University, Nanjing, China
| | - Juanlin Fu
- Southwest University of Science and Technology, Mianyang, China
| | - Shaoxuan Zhang
- School of Geography and Ocean Science of Nanjing University, Nanjing, China
| | - Tianhua Ni
- School of Geography and Ocean Science of Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Liu P, Hu W, Tian K, Huang B, Zhao Y, Wang X, Zhou Y, Shi B, Kwon BO, Choi K, Ryu J, Chen Y, Wang T, Khim JS. Accumulation and ecological risk of heavy metals in soils along the coastal areas of the Bohai Sea and the Yellow Sea: A comparative study of China and South Korea. ENVIRONMENT INTERNATIONAL 2020; 137:105519. [PMID: 32014790 DOI: 10.1016/j.envint.2020.105519] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/02/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Soils in coastal areas of the land-sea interface are vulnerable to heavy metal (HM) accumulation and subsequently to human health risk. However, few studies have investigated the HM pollution and risk in soils along the coastal areas of the Yellow Sea Large Marine Ecosystem (YSLME), in an international perspective. This study is the first comprehensive work in the YSLME encompassing 122 coastal locations along the Bohai Sea (BS), Yellow Sea of China (YSC), and Yellow Sea of South Korea (YSK). Soil HM pollution showed great spatial variations cross the regions and countries. Accumulations of As, Cu, Pb, and Zn in the YSK were significantly higher than those in the BS and YSC (p < 0.05). Whilst the elevated Cd, Hg, and Ni in soils were found in the BS and YSC compared to those in the YSK (p < 0.05). Meantime, the assessment of ecological risk posed by HMs indicated higher potential risk in the BS than other coastal areas. In specific, Cd and Hg posed a higher risk in the BS and YSC, while As showed relatively high risk in the YSK, indicating site-dependent accumulation of HMs in soils. Soil pH and organic matter were found to be important factors affecting the HM accumulation in the study areas. Industrial activities are the major driving factors influencing spatial distributions of HMs, and such activities exhibited different degrees of influence across the sampling sites. Altogether, the results of present study first identified the bilateral characteristics of soil HM pollution along the entire coasts of the YSLME in a comprehensive manner in several aspects: (1) sources, (2) hot spots, (3) priority chemicals of concern, and (4) site-specific potential risk of the soil HMs. Overall, this study provides references and backgrounds for future environmental management strategies and aids in developing a bilateral government policy towards coastal pollution management of HMs from an international scale and perspective.
Collapse
Affiliation(s)
- Peng Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyou Hu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kang Tian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Biao Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongcun Zhao
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xinkai Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunqiao Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bong-Oh Kwon
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungsik Choi
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongseong Ryu
- Department of Marine Biotechnology, Anyang University, Ganghwa-gun, Incheon 23038, Republic of Korea
| | - Yong Chen
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX 77843, USA
| | - Tieyu Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|