1
|
Muraki EJ, Dahm SF, Pexman PM. Meaning in hand: Investigating shared mechanisms of motor imagery and sensorimotor simulation in language processing. Cognition 2023; 240:105589. [PMID: 37566931 DOI: 10.1016/j.cognition.2023.105589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/26/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023]
Abstract
There is substantial evidence to support grounded theories of semantic representation, however the mechanisms of simulation in most theories are underspecified. In the present study, we used an individual differences approach to test whether motor imagery may share some mechanisms with sensorimotor simulations engaged during semantic processing. We quantified individual differences in motor imagery ability via implicit imagery tasks and explicit imagery questionnaires and tested their relationship to sensorimotor effects in syntactic classification tasks. In Experiment 1 (N = 185) we tested relationships between motor imagery and semantic processing of body-object interaction meaning (BOI; the degree to which you can interact with a word's referent) and foot/leg action meaning. We observed two interactions between imagery ability measured on the Florida Praxis Imagery Questionnaire (FPIQ) and BOI effects in semantic processing (response time and accuracy). In both interactions poorer imagery ability was associated with null BOI effects, whereas better imagery was associated with BOI effects. We also observed faster and more accurate responses to verbs associated with more foot/leg action meaning than verbs with less foot/leg action meaning, but this foot/leg action effect did not significantly interact with individual differences in motor imagery. In Experiment 2 (N = 195) we tested whether the interactions observed in Experiment 1 were dependent on the object-directed nature of the actions, or whether similar effects would be observed for hand actions not associated with objects. We also expanded our investigation beyond hand and foot imagery to consider whole body imagery. We observed an interaction between performance on a hand laterality judgement task (HLJT; assessing hand motor imagery) and sensorimotor effects in semantic processing of verbs associated with hand/arm action meaning. Participants with the fastest responses on the most difficult trials of the HLJT showed no significant difference in their response times to words with high and low hand/arm action meaning. We also observed faster and more accurate responses to high relative to low embodiment verbs, but this sensorimotor effect did not interact with individual differences in motor imagery. The results suggest specific (and not general) associations, in that some, but not all forms of hand and object-directed motor imagery are related to sensorimotor effects in language processing of hand/arm action verbs and nouns describing objects that are easy to interact with. As such, hand and object-directed motor imagery may share mechanisms with sensorimotor simulation during semantic processing.
Collapse
Affiliation(s)
- Emiko J Muraki
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada.
| | - Stephan F Dahm
- Department of Psychology, Universität Innsbruck, Austria
| | - Penny M Pexman
- Department of Psychology, University of Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Canada
| |
Collapse
|
2
|
Ibáñez A, Kühne K, Miklashevsky A, Monaco E, Muraki E, Ranzini M, Speed LJ, Tuena C. Ecological Meanings: A Consensus Paper on Individual Differences and Contextual Influences in Embodied Language. J Cogn 2023; 6:59. [PMID: 37841670 PMCID: PMC10573819 DOI: 10.5334/joc.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/20/2022] [Indexed: 10/17/2023] Open
Abstract
Embodied theories of cognition consider many aspects of language and other cognitive domains as the result of sensory and motor processes. In this view, the appraisal and the use of concepts are based on mechanisms of simulation grounded on prior sensorimotor experiences. Even though these theories continue receiving attention and support, increasing evidence indicates the need to consider the flexible nature of the simulation process, and to accordingly refine embodied accounts. In this consensus paper, we discuss two potential sources of variability in experimental studies on embodiment of language: individual differences and context. Specifically, we show how factors contributing to individual differences may explain inconsistent findings in embodied language phenomena. These factors include sensorimotor or cultural experiences, imagery, context-related factors, and cognitive strategies. We also analyze the different contextual modulations, from single words to sentences and narratives, as well as the top-down and bottom-up influences. Similarly, we review recent efforts to include cultural and language diversity, aging, neurodegenerative diseases, and brain disorders, as well as bilingual evidence into the embodiment framework. We address the importance of considering individual differences and context in clinical studies to drive translational research more efficiently, and we indicate recommendations on how to correctly address these issues in future research. Systematically investigating individual differences and context may contribute to understanding the dynamic nature of simulation in language processes, refining embodied theories of cognition, and ultimately filling the gap between cognition in artificial experimental settings and cognition in the wild (i.e., in everyday life).
Collapse
Affiliation(s)
- Agustín Ibáñez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Santiago de Chile, Chile
- Cognitive Neuroscience Center (CNC), Universidad de San Andrés and CONICET, Buenos Aires, Argentina
- Global Brain Health Institute (GBHI), University of California San Francisco (UCSF), California, US
- Trinity College Dublin (TCD), Dublin, Ireland, IE
| | - Katharina Kühne
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, DE
| | - Alex Miklashevsky
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, DE
| | - Elisa Monaco
- Laboratory for Cognitive and Neurological Sciences, Department of Neuroscience and Movement Science, Faculty of Science and Medicine, University of Fribourg, CH
| | - Emiko Muraki
- Department of Psychology & Hotchkiss Brain Institute, University of Calgary, CA
| | | | | | - Cosimo Tuena
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Milan, IT
| |
Collapse
|
3
|
Bayram M, Palluel-Germain R, Lebon F, Durand E, Harquel S, Perrone-Bertolotti M. Motor imagery training to improve language processing: What are the arguments? Front Hum Neurosci 2023; 17:982849. [PMID: 36816506 PMCID: PMC9929469 DOI: 10.3389/fnhum.2023.982849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
Studies showed that motor expertise was found to induce improvement in language processing. Grounded and situated approaches attributed this effect to an underlying automatic simulation of the motor experience elicited by action words, similar to motor imagery (MI), and suggest shared representations of action conceptualization. Interestingly, recent results also suggest that the mental simulation of action by MI training induces motor-system modifications and improves motor performance. Consequently, we hypothesize that, since MI training can induce motor-system modifications, it could be used to reinforce the functional connections between motor and language system, and could thus lead to improved language performance. Here, we explore these potential interactions by reviewing recent fundamental and clinical literature in the action-language and MI domains. We suggested that exploiting the link between action language and MI could open new avenues for complementary language improvement programs. We summarize the current literature to evaluate the rationale behind this novel training and to explore the mechanisms underlying MI and its impact on language performance.
Collapse
Affiliation(s)
- Mariam Bayram
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France
| | | | - Florent Lebon
- Laboratoire INSERM U1093 Cognition, Action, et Plasticité Sensorimotrice, Université de Bourgogne, Faculté des Sciences du Sport (UFR STAPS), Dijon, France,Institut Universitaire de France (IUF), Paris, France
| | - Edith Durand
- Département d’Orthophonie, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Sylvain Harquel
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
| | - Marcela Perrone-Bertolotti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France,Institut Universitaire de France (IUF), Paris, France,*Correspondence: Marcela Perrone-Bertolotti,
| |
Collapse
|
4
|
Bonnet C, Bayram M, El Bouzaïdi Tiali S, Lebon F, Harquel S, Palluel-Germain R, Perrone-Bertolotti M. Kinesthetic motor-imagery training improves performance on lexical-semantic access. PLoS One 2022; 17:e0270352. [PMID: 35749512 PMCID: PMC9232155 DOI: 10.1371/journal.pone.0270352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/08/2022] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to evaluate the effect of Motor Imagery (MI) training on language comprehension. In line with literature suggesting an intimate relationship between the language and the motor system, we proposed that a MI-training could improve language comprehension by facilitating lexico-semantic access. In two experiments, participants were assigned to a kinesthetic motor-imagery training (KMI) group, in which they had to imagine making upper-limb movements, or to a static visual imagery training (SVI) group, in which they had to mentally visualize pictures of landscapes. Differential impacts of both training protocols on two different language comprehension tasks (i.e., semantic categorization and sentence-picture matching task) were investigated. Experiment 1 showed that KMI training can induce better performance (shorter reaction times) than SVI training for the two language comprehension tasks, thus suggesting that a KMI-based motor activation can facilitate lexico-semantic access after only one training session. Experiment 2 aimed at replicating these results using a pre/post-training language assessment and a longer training period (four training sessions spread over four days). Although the improvement magnitude between pre- and post-training sessions was greater in the KMI group than in the SVI one on the semantic categorization task, the sentence-picture matching task tended to provide an opposite pattern of results. Overall, this series of experiments highlights for the first time that motor imagery can contribute to the improvement of lexical-semantic processing and could open new avenues on rehabilitation methods for language deficits.
Collapse
Affiliation(s)
- Camille Bonnet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Psychological Sciences Research Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mariam Bayram
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
| | | | - Florent Lebon
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Sylvain Harquel
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | | | - Marcela Perrone-Bertolotti
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, Grenoble, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| |
Collapse
|
5
|
Desmarteaux C, Streff A, Chen JI, Houzé B, Piché M, Rainville P. Brain Responses to Hypnotic Verbal Suggestions Predict Pain Modulation. FRONTIERS IN PAIN RESEARCH 2022; 2:757384. [PMID: 35295449 PMCID: PMC8915547 DOI: 10.3389/fpain.2021.757384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The effectiveness of hypnosis in reducing pain is well supported by the scientific literature. Hypnosis typically involves verbal suggestions but the mechanisms by which verbal contents are transformed into predictive signals to modulate perceptual processes remain unclear. We hypothesized that brain activity during verbal suggestions would predict the modulation of responses to acute nociceptive stimuli. Methods: Brain activity was measured using BOLD-fMRI in healthy participants while they listened to verbal suggestions of HYPERALGESIA, HYPOALGESIA, or NORMAL sensation (control) following a standardized hypnosis induction. Immediately after the suggestions, series of noxious electrical stimuli were administered to assess pain-related responses. Brain responses measured during the suggestions were then used to predict changes in pain-related responses using delayed regression analyses. Results: Listening to suggestions of HYPERALGESIA and HYPOALGESIA produced BOLD decreases (vs. control) in the parietal operculum (PO) and in the anterior midcingulate cortex (aMCC), and increases in the left parahippocampal gyrus (lPHG). Changes in activity in PO, aMCC and PHG during the suggestions predicted larger pain-evoked responses following the HYPERALGESIA suggestions in the anterior cingulate cortex (ACC) and the anterior insula (aINS), and smaller pain-evoked responses following the HYPOALGESIA suggestions in the ACC, aMCC, posterior insula (pINS) and thalamus. These changes in pain-evoked brain responses are consistent with the changes in pain perception reported by the participants in HYPERALGESIA and HYPOALGESIA, respectively. Conclusions: The fronto-parietal network (supracallosal ACC and PO) has been associated with self-regulation and perceived self-agency. Deactivation of these regions during suggestions is predictive of the modulation of brain responses to noxious stimuli in areas previously associated with pain perception and pain modulation. The response of the hippocampal complex may reflect its role in contextual learning, memory and pain anticipation/expectations induced by verbal suggestions of pain modulation. This study provides a basis to further explore the transformation of verbal suggestions into perceptual modulatory processes fundamental to hypnosis neurophenomenology. These findings are discussed in relation to predictive coding models.
Collapse
Affiliation(s)
- Carolane Desmarteaux
- University of Montréal, Montréal, QC, Canada.,University Institute of Geriatrics of Montréal, Montréal, QC, Canada
| | | | - Jen-I Chen
- University of Montréal, Montréal, QC, Canada.,University Institute of Geriatrics of Montréal, Montréal, QC, Canada
| | - Bérengère Houzé
- University of Montréal, Montréal, QC, Canada.,University Institute of Geriatrics of Montréal, Montréal, QC, Canada
| | - Mathieu Piché
- University of Québec in Trois-Rivières, Trois-Rivières, QC, Canada
| | - Pierre Rainville
- University of Montréal, Montréal, QC, Canada.,University Institute of Geriatrics of Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Wiepke A, Miklashevsky A. Imaginary Worlds and Their Borders: An Opinion Article. Front Psychol 2021; 12:793764. [PMID: 34956021 PMCID: PMC8702435 DOI: 10.3389/fpsyg.2021.793764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 12/05/2022] Open
Affiliation(s)
- Axel Wiepke
- Complex Multimedia Application Architectures, Institute of Computer Science, University of Potsdam, Potsdam, Germany
| | - Alex Miklashevsky
- Potsdam Embodied Cognition Group, Cognitive Sciences, University of Potsdam, Potsdam, Germany
| |
Collapse
|
7
|
Cayol Z, Rotival C, Paulignan Y, Nazir TA. “Embodied” language processing: Mental motor imagery aptitude predicts word-definition skill for high but not for low imageable words in adolescents. Brain Cogn 2020; 145:105628. [DOI: 10.1016/j.bandc.2020.105628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/02/2020] [Accepted: 09/07/2020] [Indexed: 11/15/2022]
|