1
|
Kapur NK, Kanwar MK, Yousefzai R, Bhimiraj A, Farber H, Esposito ML, Kiernan MS, John KJ, Burkhoff D. Mechanical Preload Reduction: Harnessing a Cornerstone of Heart Failure Management to Improve Clinical Outcomes. ASAIO J 2024; 70:821-831. [PMID: 38829983 PMCID: PMC11426983 DOI: 10.1097/mat.0000000000002240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Decongestion is a cornerstone therapeutic goal for those presenting with decompensated heart failure. Current approaches to clinical decongestion include reducing cardiac preload, which is typically limited to diuretics and hemofiltration. Several new technologies designed to mechanically reduce cardiac preload are in development. In this review, we discuss the pathophysiology of decompensated heart failure; the central role of targeting cardiac preload; emerging mechanical preload reduction technologies; and potential application of these devices.
Collapse
Affiliation(s)
- Navin K. Kapur
- From the Department of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Manreet K. Kanwar
- Department of Cardiology, Cardiovascular Institute at Allegheny Health Network, Pittsburgh, Pennsylvania
| | - Rayan Yousefzai
- Department of Cardiology, Houston Methodist Research Institute, Houston, Texas
| | - Arvind Bhimiraj
- Department of Cardiology, Houston Methodist Research Institute, Houston, Texas
| | - Harrison Farber
- From the Department of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Michele L. Esposito
- Department of Cardiology, Medical University of South Carolina, Charleston, South Carolina
| | - Michael S. Kiernan
- From the Department of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Kevin J. John
- From the Department of Cardiology, Tufts Medical Center, Boston, Massachusetts
| | - Daniel Burkhoff
- Department of Cardiology, The Cardiovascular Research Foundation, New York, New York
| |
Collapse
|
2
|
Wang L, Pronk AC, van Poelgeest EP, Briggs R, Claassen JAHR, Jansen S, Klop M, de Lange FJ, Meskers CCGM, Odekerken VJJ, Payne SJ, Trappenburg MC, Thijs RD, Uleman JF, Hoekstra AG, van der Velde N. Applying systems thinking to unravel the mechanisms underlying orthostatic hypotension related fall risk. GeroScience 2023; 45:2743-2755. [PMID: 37115348 PMCID: PMC10651607 DOI: 10.1007/s11357-023-00802-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Orthostatic hypotension (OH) is an established and common cardiovascular risk factor for falls. An in-depth understanding of the various interacting pathophysiological pathways contributing to OH-related falls is essential to guide improvements in diagnostic and treatment opportunities. We applied systems thinking to multidisciplinary map out causal mechanisms and risk factors. For this, we used group model building (GMB) to develop a causal loop diagram (CLD). The GMB was based on the input of experts from multiple domains related to OH and falls and all proposed mechanisms were supported by scientific literature. Our CLD is a conceptual representation of factors involved in OH-related falls, and their interrelatedness. Network analysis and feedback loops were applied to analyze and interpret the CLD, and quantitatively summarize the function and relative importance of the variables. Our CLD contains 50 variables distributed over three intrinsic domains (cerebral, cardiovascular, and musculoskeletal), and an extrinsic domain (e.g., medications). Between the variables, 181 connections and 65 feedback loops were identified. Decreased cerebral blood flow, low blood pressure, impaired baroreflex activity, and physical inactivity were identified as key factors involved in OH-related falls, based on their high centralities. Our CLD reflects the multifactorial pathophysiology of OH-related falls. It enables us to identify key elements, suggesting their potential for new diagnostic and treatment approaches in fall prevention. The interactive online CLD renders it suitable for both research and educational purposes and this CLD is the first step in the development of a computational model for simulating the effects of risk factors on falls.
Collapse
Affiliation(s)
- Liping Wang
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Geriatrics, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Aging and Later Life, Amsterdam, The Netherlands
| | - Anouschka C Pronk
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Geriatrics, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Aging and Later Life, Amsterdam, The Netherlands
| | - Eveline P van Poelgeest
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Geriatrics, Meibergdreef 9, Amsterdam, The Netherlands.
- Amsterdam Public Health, Aging and Later Life, Amsterdam, The Netherlands.
| | - Robert Briggs
- The Irish Longitudinal Study on Ageing, Trinity College Dublin, Dublin, Ireland
| | - Jurgen A H R Claassen
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sofie Jansen
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Geriatrics, Meibergdreef 9, Amsterdam, The Netherlands
| | - Marjolein Klop
- Department of Biophysics, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Frederik J de Lange
- Amsterdam UMC location University of Amsterdam, Cardiology and Cardiothoracic Surgery, Meibergdreef 9, Amsterdam, The Netherlands
| | - Carel C G M Meskers
- Amsterdam UMC location Vrije Universiteit Amsterdam, Rehabilitation Medicine, De Boelelaan, 1117, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Vincent J J Odekerken
- Amsterdam UMC location University of Amsterdam, Neurology, Meibergdreef 9, Amsterdam, The Netherlands
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | | | - Roland D Thijs
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Jeroen F Uleman
- Department of Geriatric Medicine, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute for Advanced Study, Amsterdam, The Netherlands
| | - Alfons G Hoekstra
- Computational Science Lab, Informatics Institute, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Nathalie van der Velde
- Amsterdam UMC location University of Amsterdam, Internal Medicine, Geriatrics, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Public Health, Aging and Later Life, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Neubert E, Rassler B, Hoschke A, Raffort C, Salameh A. Effects of Normobaric Hypoxia and Adrenergic Blockade over 72 h on Cardiac Function in Rats. Int J Mol Sci 2023; 24:11417. [PMID: 37511176 PMCID: PMC10379660 DOI: 10.3390/ijms241411417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
In rats, acute normobaric hypoxia depressed left ventricular (LV) inotropic function. After 24 h of hypoxic exposure, a slight recovery of LV function occurred. We speculated that prolonged hypoxia (72 h) would induce acclimatization and, hence, recovery of LV function. Moreover, we investigated biomarkers of nitrosative stress and apoptosis as possible causes of hypoxic LV depression. To elucidate the role of hypoxic sympathetic activation, we studied whether adrenergic blockade would further deteriorate the general state of the animals and their cardiac function. Ninety-four rats were exposed over 72 h either to normal room air (N) or to normobaric hypoxia (H). The rodents received infusion (0.1 mL/h) with 0.9% NaCl or with different adrenergic blockers. Despite clear signs of acclimatization to hypoxia, the LV depression continued persistently after 72 h of hypoxia. Immunohistochemical analyses revealed significant increases in markers of nitrosative stress, adenosine triphosphate deficiency and apoptosis in the myocardium, which could provide a possible explanation for the absence of LV function recovery. Adrenergic blockade had a slightly deteriorative effect on the hypoxic LV function compared to the hypoxic group with maintained sympathetic efficacy. These findings show that hypoxic sympathetic activation compensates, at least partially, for the compromised function in hypoxic conditions, therefore emphasizing its importance for hypoxia adaptation.
Collapse
Affiliation(s)
- Elias Neubert
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (E.N.); (A.H.)
| | - Beate Rassler
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (E.N.); (A.H.)
| | - Annekathrin Hoschke
- Carl-Ludwig-Institute of Physiology, University of Leipzig, 04103 Leipzig, Germany; (E.N.); (A.H.)
| | - Coralie Raffort
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (C.R.); (A.S.)
| | - Aida Salameh
- Department of Pediatric Cardiology, Heart Centre, University of Leipzig, 04289 Leipzig, Germany; (C.R.); (A.S.)
| |
Collapse
|
4
|
Single cardiomyocytes from papillary muscles show lower preload-dependent activation of force compared to cardiomyocytes from the left ventricular free wall. J Mol Cell Cardiol 2022; 166:127-136. [DOI: 10.1016/j.yjmcc.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/05/2022] [Accepted: 02/22/2022] [Indexed: 01/21/2023]
|
5
|
Villalobos Lizardi JC, Baranger J, Nguyen MB, Asnacios A, Malik A, Lumens J, Mertens L, Friedberg MK, Simmons CA, Pernot M, Villemain O. A guide for assessment of myocardial stiffness in health and disease. NATURE CARDIOVASCULAR RESEARCH 2022; 1:8-22. [PMID: 39196108 DOI: 10.1038/s44161-021-00007-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/10/2021] [Indexed: 08/29/2024]
Abstract
Myocardial stiffness is an intrinsic property of the myocardium that influences both diastolic and systolic cardiac function. Myocardial stiffness represents the resistance of this tissue to being deformed and depends on intracellular components of the cardiomyocyte, particularly the cytoskeleton, and on extracellular components, such as collagen fibers. Myocardial disease is associated with changes in myocardial stiffness, and its assessment is a key diagnostic marker of acute or chronic pathological myocardial disease with the potential to guide therapeutic decision-making. In this Review, we appraise the different techniques that can be used to estimate myocardial stiffness, evaluate their advantages and disadvantages, and discuss potential clinical applications.
Collapse
Affiliation(s)
- José Carlos Villalobos Lizardi
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jerome Baranger
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Minh B Nguyen
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Aimen Malik
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Joost Lumens
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Luc Mertens
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Mathieu Pernot
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, CNRS UMR 8063, PSL Research University, Paris, France
| | - Olivier Villemain
- Division of Cardiology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Groen M, López-Dávila AJ, Zittrich S, Pfitzer G, Stehle R. Hypertrophic and Dilated Cardiomyopathy-Associated Troponin T Mutations R130C and ΔK210 Oppositely Affect Length-Dependent Calcium Sensitivity of Force Generation. Front Physiol 2020; 11:516. [PMID: 32581830 PMCID: PMC7283609 DOI: 10.3389/fphys.2020.00516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/27/2020] [Indexed: 11/25/2022] Open
Abstract
Length-dependent activation of calcium-dependent myocardial force generation provides the basis for the Frank-Starling mechanism. To directly compare the effects of mutations associated with hypertrophic cardiomyopathy and dilated cardiomyopathy, the native troponin complex in skinned trabecular fibers of guinea pigs was exchanged with recombinant heterotrimeric, human, cardiac troponin complexes containing different human cardiac troponin T subunits (hcTnT): hypertrophic cardiomyopathy-associated hcTnTR130C, dilated cardiomyopathy-associated hcTnTΔK210 or the wild type hcTnT (hcTnTWT) serving as control. Force-calcium relations of exchanged fibers were explored at short fiber length defined as 110% of slack length (L0) and long fiber length defined as 125% of L0 (1.25 L0). At short fiber length (1.1 L0), calcium sensitivity of force generation expressed by −log [Ca2+] required for half-maximum force generation (pCa50) was highest for the hypertrophic cardiomyopathy-associated mutation R130C (5.657 ± 0.019), intermediate for the wild type control (5.580 ± 0.028) and lowest for the dilated cardiomyopathy-associated mutation ΔK210 (5.325 ± 0.038). Lengthening fibers from 1.1 L0 to 1.25 L0 increased calcium sensitivity in fibers containing hcTnTR130C (delta-pCa50 = +0.030 ± 0.010), did not alter calcium sensitivity in the wild type control (delta-pCa50 = −0.001 ± 0.010), and decreased calcium sensitivity in fibers containing hcTnTΔK210 (delta-pCa50 = −0.034 ± 0.013). Length-dependent activation indicated by the delta-pCa50 was highly significantly (P < 0.001) different between the two mutations. We hypothesize that primary effects of mutations on length-dependent activation contribute to the development of the diverging phenotypes in hypertrophic and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Marcel Groen
- Department of Neurology and Neurogeriatry, Johannes Wesling Medical Center, Ruhr-University Bochum, Bochum, Germany
| | | | - Stefan Zittrich
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Gabriele Pfitzer
- Institute of Neurophysiology, University of Cologne, Cologne, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
7
|
Muir WW, Hamlin RL. Myocardial Contractility: Historical and Contemporary Considerations. Front Physiol 2020; 11:222. [PMID: 32296340 PMCID: PMC7137917 DOI: 10.3389/fphys.2020.00222] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/26/2020] [Indexed: 12/17/2022] Open
Abstract
The term myocardial contractility is thought to have originated more than 125 years ago and has remained and enigma ever since. Although the term is frequently used in textbooks, editorials and contemporary manuscripts its definition remains illusive often being conflated with cardiac performance or inotropy. The absence of a universally accepted definition has led to confusion, disagreement and misconceptions among physiologists, cardiologists and safety pharmacologists regarding its definition particularly in light of new discoveries regarding the load dependent kinetics of cardiac contraction and their translation to cardiac force-velocity and ventricular pressure-volume measurements. Importantly, the Starling interpretation of force development is length-dependent while contractility is length independent. Most historical definitions employ an operational approach and define cardiac contractility in terms of the hearts mechanical properties independent of loading conditions. Literally defined the term contract infers that something has become smaller, shrunk or shortened. The addition of the suffix “ility” implies the quality of this process. The discovery and clinical investigation of small molecules that bind to sarcomeric proteins independently altering force or velocity requires that a modern definition of the term myocardial contractility be developed if the term is to persist. This review reconsiders the historical and contemporary interpretations of the terms cardiac performance and inotropy and recommends a modern definition of myocardial contractility as the preload, afterload and length-independent intrinsic kinetically controlled, chemo-mechanical processes responsible for the development of force and velocity.
Collapse
Affiliation(s)
- William W Muir
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Robert L Hamlin
- College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
8
|
Belviso I, Romano V, Sacco AM, Ricci G, Massai D, Cammarota M, Catizone A, Schiraldi C, Nurzynska D, Terzini M, Aldieri A, Serino G, Schonauer F, Sirico F, D’Andrea F, Montagnani S, Di Meglio F, Castaldo C. Decellularized Human Dermal Matrix as a Biological Scaffold for Cardiac Repair and Regeneration. Front Bioeng Biotechnol 2020; 8:229. [PMID: 32266249 PMCID: PMC7099865 DOI: 10.3389/fbioe.2020.00229] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
The complex and highly organized environment in which cells reside consists primarily of the extracellular matrix (ECM) that delivers biological signals and physical stimuli to resident cells. In the native myocardium, the ECM contributes to both heart compliance and cardiomyocyte maturation and function. Thus, myocardium regeneration cannot be accomplished if cardiac ECM is not restored. We hypothesize that decellularized human skin might make an easily accessible and viable alternate biological scaffold for cardiac tissue engineering (CTE). To test our hypothesis, we decellularized specimens of both human skin and human myocardium and analyzed and compared their composition by histological methods and quantitative assays. Decellularized dermal matrix was then cut into 600-μm-thick sections and either tested by uniaxial tensile stretching to characterize its mechanical behavior or used as three-dimensional scaffold to assess its capability to support regeneration by resident cardiac progenitor cells (hCPCs) in vitro. Histological and quantitative analyses of the dermal matrix provided evidence of both effective decellularization with preserved tissue architecture and retention of ECM proteins and growth factors typical of cardiac matrix. Further, the elastic modulus of the dermal matrix resulted comparable with that reported in literature for the human myocardium and, when tested in vitro, dermal matrix resulted a comfortable and protective substrate promoting and supporting hCPC engraftment, survival and cardiomyogenic potential. Our study provides compelling evidence that dermal matrix holds promise as a fully autologous and cost-effective biological scaffold for CTE.
Collapse
Affiliation(s)
- Immacolata Belviso
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Veronica Romano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Anna Maria Sacco
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giulia Ricci
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic-Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Daria Nurzynska
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Mara Terzini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Alessandra Aldieri
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianpaolo Serino
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Fabrizio Schonauer
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Francesco D’Andrea
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Franca Di Meglio
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Clotilde Castaldo
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
9
|
Vallée A, Lecarpentier Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci 2019; 9:98. [PMID: 31827764 PMCID: PMC6902440 DOI: 10.1186/s13578-019-0362-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/30/2019] [Indexed: 12/21/2022] Open
Abstract
Myofibroblasts are non-muscle contractile cells that play a key physiologically role in organs such as the stem villi of the human placenta during physiological pregnancy. They are able to contract and relax in response to changes in the volume of the intervillous chamber. Myofibroblasts have also been observed in several diseases and are involved in wound healing and the fibrotic processes affecting several organs, such as the liver, lungs, kidneys and heart. During the fibrotic process, tissue retraction rather than contraction is correlated with collagen synthesis in the extracellular matrix, leading to irreversible fibrosis and, finally, apoptosis of myofibroblasts. The molecular motor of myofibroblasts is the non-muscle type IIA and B myosin (NMMIIA and NMMIIB). Fibroblast differentiation into myofibroblasts is largely governed by the transforming growth factor-β1 (TGF-β1). This system controls the canonical WNT/β-catenin pathway in a positive manner, and PPARγ in a negative manner. The WNT/β-catenin pathway promotes fibrosis, while PPARγ prevents it. This review focuses on the contractile properties of myofibroblasts and the conductor, TGF-β1, which together control the opposing interplay between PPARγ and the canonical WNT/β-catenin pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- 1Délégation à la Recherche Clinique (DRCI), Hôpital Foch, Suresnes, France.,DACTIM-MIS, Laboratoire de Mathématiques et Applications (LMA), CNRS, UMR 7348, Université de Poitiers, CHU de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), Meaux, France
| |
Collapse
|
10
|
Vikhorev PG, Vikhoreva NN. Cardiomyopathies and Related Changes in Contractility of Human Heart Muscle. Int J Mol Sci 2018; 19:ijms19082234. [PMID: 30065175 PMCID: PMC6121228 DOI: 10.3390/ijms19082234] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/22/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
About half of hypertrophic and dilated cardiomyopathies cases have been recognized as genetic diseases with mutations in sarcomeric proteins. The sarcomeric proteins are involved in cardiomyocyte contractility and its regulation, and play a structural role. Mutations in non-sarcomeric proteins may induce changes in cell signaling pathways that modify contractile response of heart muscle. These facts strongly suggest that contractile dysfunction plays a central role in initiation and progression of cardiomyopathies. In fact, abnormalities in contractile mechanics of myofibrils have been discovered. However, it has not been revealed how these mutations increase risk for cardiomyopathy and cause the disease. Much research has been done and still much is being done to understand how the mechanism works. Here, we review the facts of cardiac myofilament contractility in patients with cardiomyopathy and heart failure.
Collapse
Affiliation(s)
- Petr G Vikhorev
- National Heart and Lung Institute, Imperial College London, London W12 0NN, UK.
| | - Natalia N Vikhoreva
- Heart Science Centre, Magdi Yacoub Institute, Harefield Hospital, London UB9 6JH, UK.
| |
Collapse
|
11
|
Calixto Fernandes MH, Schricker T, Magder S, Hatzakorzian R. Perioperative fluid management in kidney transplantation: a black box. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:14. [PMID: 29368625 PMCID: PMC5784708 DOI: 10.1186/s13054-017-1928-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/21/2017] [Indexed: 01/14/2023]
Abstract
The incidence of delayed graft function in patients undergoing kidney transplantation remains significant. Optimal fluid therapy has been shown to decrease delayed graft function after renal transplantation. Traditionally, the perioperative volume infusion regimen in this patient population has been guided by central venous pressure as an estimation of the patient’s volume status and mean arterial pressure, but this is based on sparse evidence from mostly retrospective observational studies. Excessive volume infusion to the point of no further fluid responsiveness can damage the endothelial glycocalyx and is no longer considered to be the best approach. However, achievement of adequate flow to maintain sufficient tissue perfusion without maximization of cardiac filling remains a challenge. Novel minimally invasive technologies seem to reliably assess volume responsiveness, heart function and perfusion adequacy. Prospective comparative clinical studies are required to better understand the use of dynamic analyses of flow parameters for adequate fluid management in kidney transplant recipients. We review perioperative fluid assessment techniques and discuss conventional and novel monitoring strategies in the kidney transplant recipient.
Collapse
Affiliation(s)
| | - Thomas Schricker
- Department of Anesthesia, Royal Victoria Hospital, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Sheldon Magder
- Department of Critical Care Medicine, Royal Victoria Hospital, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Roupen Hatzakorzian
- Department of Anesthesia, Royal Victoria Hospital, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.,Department of Critical Care Medicine, Royal Victoria Hospital, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| |
Collapse
|
12
|
Buschmann K, Chaban R, Emrich AL, Youssef M, Kornberger A, Beiras-Fernandez A, Vahl CF. Septic cardiomyopathy: evidence for a reduced force-generating capacity of human atrial myocardium in acute infective endocarditis. Innov Surg Sci 2017; 2:81-87. [PMID: 31579740 PMCID: PMC6753999 DOI: 10.1515/iss-2016-0202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background This study analyzes the myocardial force-generating capacity in infective endocarditis (IE) using an experimental model of isolated human atrial myocardium. In vivo, it is difficult to decide whether or not alterations in myocardial contractile behavior are due to secondary effects associated with infection such as an altered heart rate, alterations of preload and afterload resulting from valvular defects, and altered humoral processes. Our in vitro model using isolated human myocardium, in contrast, guarantees exactly defined experimental conditions with respect to preload, afterload, and contraction frequency, thus not only preventing confounding by in vivo determinants of contractility but also excluding effects of other factors associated with sepsis, hemodynamics, humoral influences, temperature, and medical treatment. Methods We analyzed right atrial trabeculae (diameter 0.3–0.5 mm, initial length 5 mm) from 32 patients undergoing aortic and/or mitral valve replacement for acute valve incompetence caused by IE and 65 controls receiving aortic and/or mitral valve replacement for nonendocarditic valve incompetence. Isometric force amplitudes and passive resting force values measured at optimal length in the two groups were compared using Student’s t-test. Results There were no significant differences between the groups in terms of the passive resting force. The isometric force amplitude in the endocarditis group, however, was significantly lower than in the nonendocarditis group (p=0.001). In the endocarditis group, the calculated active force, defined as the isometric force amplitude minus the resting force, was significantly lower (p<0.0001) and the resting force/active force ratio was significantly higher (p<0.0001). Using linear regression to describe the function between resting force and active force, we identified a significant difference in slope (p<0.0001), with lower values found in the endocarditis group. Conclusion Our data suggest that the force-generating capacity of atrial myocardium is significantly reduced in patients with IE. In these patients, an elevated resting force is required to achieve a given force amplitude. It remains unclear, however, whether this is due to calcium desensitization of the contractile apparatus, presence of myocardial edema, fibrotic remodeling, disruption of contractile units, or other mechanisms.
Collapse
Affiliation(s)
- Katja Buschmann
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Ryan Chaban
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Anna Lena Emrich
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marwan Youssef
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Angela Kornberger
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andres Beiras-Fernandez
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Friedrich Vahl
- Department of Cardiothoracic and Vascular Surgery, Hospital of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|