1
|
Lee H, Kim YJ, Yang YJ, Lee JH, Lee HH. Development of antibacterial dual-cure dental resin composites via tetrapod-shaped zinc oxide incorporation. Dent Mater 2024; 40:1762-1772. [PMID: 39117497 DOI: 10.1016/j.dental.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVES This study aimed to evaluate the effects of incorporating the 0-20 wt% tetrapod-shaped zinc oxide (tZnO) whiskers on the mechanical, antibacterial, and cytotoxic properties exhibited by experimental dual-cure resin composites. METHODS Commercially obtained tZnO whiskers underwent surface modification using 3-methacryloxypropyltrimethoxysilane (γ-MPS). Subsequently, four groups of resin composites containing 0, 5, 10, and 20 wt% silanized tZnO along with barium borosilicate glass (BaBSG) fillers were fabricated while maintaining total filler loading at 60 wt%. Mechanical properties were examined utilizing specimens produced adhering to ISO 4049:2019 guidelines where applicable. Depth of cure was quantified immediately, while three-point flexural strength, flexural modulus, fracture toughness, Vickers hardness, compressive strength, and diametral tensile strength were assessed after 24 h of storage in 37 °C distilled water. Planktonic bacteria of Streptococcus mutans (S. mutans) were cultured and tested for antibacterial activity using disk diffusion and microbial anti-adhesion assays. Cytotoxicity was examined by preparing extracts from specimens in a cell culture medium and exposing stem cells from human exfoliated deciduous teeth (SHED) to serial dilutions of these extracts, then assessing cell viability and survival using CCK-8 assay and live/dead staining. RESULTS Elevating tZnO loading yielded significant reductions in depth of cure, compressive (from 296.4 to 254.6 MPa), and diametral tensile strength (from 42.7 to 31.0 MPa), while flexural strength (91.3-94.1 MPa), flexural modulus (6.4-6.6 GPa), fracture toughness (0.96-1.04 MPa·m0.5), and Vickers hardness (36.5-37.4 kgf·mm-2) remained the same. Composites integrating tZnO displayed markedly enhanced antibacterial activity against S. mutans, based on anti-adhesion tests and live/dead staining. No cytotoxicity was observed for SHED treated with extracts from resin composites possessing up to 20 wt% tZnO whiskers. SIGNIFICANCE This study demonstrates that incorporating up to 20 wt% silanized tZnO in place of traditional barium glass particles appreciably enhances dual-cure resin composite antibacterial function against S. mutans without compromising mechanical properties.
Collapse
Affiliation(s)
- Hwalim Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| | - Yu-Jin Kim
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| | - Ye-Jin Yang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| | - Jung-Hwan Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| | - Hae-Hyoung Lee
- Department of Biomaterials Science, College of Dentistry, Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea; Institute of Tissue Regeneration Engineering (ITREN), Dankook University, 119 Dandae-ro, Cheonan 31116, the Republic of Korea.
| |
Collapse
|
2
|
Melo ADP, de Rosatto CMP, Ferraz DC, de Souza GL, Moura CCG. Evaluation of Cytotoxicity, Cell Attachment, and Elemental Characterization of Three Calcium Silicate-Based Sealers. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6705. [PMID: 37895687 PMCID: PMC10608491 DOI: 10.3390/ma16206705] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023]
Abstract
We investigated three calcium silicate-based sealers with respect to their chemical characterization, cytotoxicity, and attachment to RAW264.7 cells. BioRoot RCS (BR), Bio-C Sealer (BC), and Sealer Plus BC (SPBC) were assessed using Fourier transform infrared spectroscopy (FTIR), X-ray fluorescence spectroscopy (XRF), and energy-dispersive X-ray spectroscopy (EDX) (n = 4) for elemental characterization, and using scanning electron microscopy (SEM) to evaluate cell morphology and adhesion. Cytotoxicity was determined at different dilutions (1:1, 1:2, and 1:5) using the succinate dehydrogenase activity (MTT assay). Statistical analysis was performed for normal distribution using the Shapiro-Wilk test and for homoscedasticity using Levene's test, and one-way ANOVA, Tukey's/Dunnett's post hoc tests for cell viability and XRF (α = 0.05). Calcium silicate hydrate and calcium hydroxide were detected by FTIR in all groups. EDX detected a higher calcium content for BR and SPBC and aluminum only in the premixed sealers. XRF detected the highest calcium release in BR (p < 0.05). The surface morphology showed irregular precipitates for all the sealers. SPBC at a 1:2 dilution resulted in the lowest cell viability compared to BR (p < 0.05) and BC (p < 0.05). The calcium silicate-based sealers produced a statistically significant reduction in cellular viability at a 1:1 dilution compared to the control group (p < 0.0001). All the sealers maintained viability above 70%.
Collapse
Affiliation(s)
| | | | | | | | - Camilla Christian Gomes Moura
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia 38405-318, MG, Brazil; (A.d.P.M.); (C.M.P.d.R.); (D.C.F.); (G.L.d.S.)
| |
Collapse
|
3
|
de Souza GL, Magalhães TEA, Freitas GAN, Lemus NXA, Barbosa GLDR, Silva ACA, Moura CCG. Calcium-doped zinc oxide nanocrystals as an innovative intracanal medicament: a pilot study. Restor Dent Endod 2022; 47:e38. [PMID: 36518610 PMCID: PMC9715372 DOI: 10.5395/rde.2022.47.e38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 11/07/2022] Open
Abstract
Objectives This study investigated the cytotoxicity, radiopacity, pH, and dentinal tubule penetration of a paste of 1.0% calcium-doped zinc oxide nanocrystals (ZnO:1.0Ca) combined with propylene glycol (PRG) or polyethylene glycol and propylene glycol (PEG-PRG). Materials and Methods The pastes were prepared by mixing calcium hydroxide [Ca(OH)2] or ZnO:1.0Ca with PRG or a PEG-PRG mixture. The pH was evaluated after 24 and 96 hours of storage in deionized water. Digital radiographs were acquired for radiopacity analysis and bubble counting of each material. The materials were labeled with 0.1% fluorescein and applied to root canals, and images of their dentinal tubule penetration were obtained using confocal laser scanning microscopy. RAW264.7 macrophages were placed in different dilutions of culture media previously exposed to the materials for 24 and 96 hours and tested for cell viability using the MTT assay. Analysis of variance and the Tukey test (α = 0.05) were performed. Results ZnO:1.0Ca materials showed lower viability at 1:1 and 1:2 dilutions than Ca(OH)2 materials (p < 0.0001). Ca(OH)2 had higher pH values than ZnO:1.0Ca at 24 and 96 hours, regardless of the vehicle (p < 0.05). ZnO:1.0Ca pastes showed higher radiopacity than Ca(OH)2 pastes (p < 0.01). No between-material differences were found in bubble counting (p = 0.0902). The ZnO:1.0Ca pastes had a greater penetration depth than Ca(OH)2 in the apical third (p < 0.0001). Conclusions ZnO:1.0Ca medicaments presented higher penetrability, cell viability, and radiopacity than Ca(OH)2. Higher values of cell viability and pH were present in Ca(OH)2 than in ZnO:1.0Ca.
Collapse
Affiliation(s)
- Gabriela Leite de Souza
- Department of Endodontics, School of Dentistry, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | | | | | | | - Anielle Christine Almeida Silva
- Functional and New Nanostructured Materials Laboratory, Physics Institute, Federal University of Alagoas, Maceió, AL, Brazil
| | | |
Collapse
|
4
|
Biocompatibility and Connectivity of Semiconductor Nanostructures for Cardiac Tissue Engineering Applications. Bioengineering (Basel) 2022; 9:bioengineering9110621. [DOI: 10.3390/bioengineering9110621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
Nano- or microdevices, enabling simultaneous, long-term, multisite, cellular recording and stimulation from many excitable cells, are expected to make a strategic turn in basic and applied cardiology (particularly tissue engineering) and neuroscience. We propose an innovative approach aiming to elicit bioelectrical information from the cell membrane using an integrated circuit (IC) bearing a coating of nanowires on the chip surface. Nanowires grow directly on the backend of the ICs, thus allowing on-site amplification of bioelectric signals with uniform and controlled morphology and growth of the NWs on templates. To implement this technology, we evaluated the biocompatibility of silicon and zinc oxide nanowires (NWs), used as a seeding substrate for cells in culture, on two different primary cell lines. Human cardiac stromal cells were used to evaluate the effects of ZnO NWs of different lengths on cell behavior, morphology and growth, while BV-2 microglial-like cells and GH4-C1 neuroendocrine-like cell lines were used to evaluate cell membrane–NW interaction and contact when cultured on Si NWs. As the optimization of the contact between integrated microelectronics circuits and cellular membranes represents a long-standing issue, our technological approach may lay the basis for a new era of devices exploiting the microelectronics’ sensitivity and “smartness” to both improve investigation of biological systems and to develop suitable NW-based systems available for tissue engineering and regenerative medicine.
Collapse
|
5
|
Guerra RO, do Carmo Neto JR, de Albuquerque Martins T, Farnesi-de-Assunção TS, Junior VR, de Oliveira CJF, Silva ACA, da Silva MV. Metallic Nanoparticles: A New Frontier in the Fight Against Leishmaniasis. Curr Med Chem 2022; 29:4547-4573. [DOI: 10.2174/0929867329666220225111052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/29/2021] [Accepted: 01/01/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Leishmaniasis is a cutaneous, mucocutaneous, or visceral parasitic disease caused by protozoa of the Leishmania genus. According to the World Health Organization, Leishmaniasis causes approximately 20–40 thousand deaths annually, and Brazil, India, and some countries in Africa are the most affected by this neglected disease. In addition to parasite’s ability to evade the host’s immune system, the incidence of vectors, the genetics of different hosts, and the large number of deaths are mainly due to failures in conventional treatments that have high toxicity, low effectiveness, and prolonged therapeutic regimens. Thus, the development of new alternative therapeutics with more effective and safer actions has become one of the main challenges for researchers studying leishmaniasis. Among the many research and tested options, metallic nanoparticles, such as gold, silver, zinc oxide, and titanium dioxide, have been shown to be one of the most promising therapeutic tool because they are easily prepared and chemically modified, have a broad spectrum of action, low toxicity, and can generate reactive oxygen species and other immune responses that favor their use against different species of Leishmania. This review explores the progress of the use of metallic nanoparticles as a new tool in the treatment of leishmaniasis, as well as discusses the gaps in knowledge that need to be addressed to consolidate a safe, effective, and definitive therapeutic intervention against these infections.
Collapse
Affiliation(s)
- Rhanoica Oliveira Guerra
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - José Rodrigues do Carmo Neto
- Department of Bioscience and Technology, Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiania, GO, Brazil
| | - Tarcísio de Albuquerque Martins
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thaís Soares Farnesi-de-Assunção
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues Junior
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire de Oliveira
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Anielle Christine Almeida Silva
- Laboratório de Novos Materiais Nanoestruturados e Funcionais (LNMIS), Physics Institute, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Biological and Natural Sciences of Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|